L-functions of twisted diagonal exponential sums over finite fields
暂无分享,去创建一个
[1] Higher rank case of Dwork's conjecture , 2000, math/0005309.
[3] Daqing Wan,et al. Newton polygons of zeta functions and L functions , 1993 .
[4] Roger W. L. Yang. Newton polygons of L-functions of polynomials of the form Xd+λX , 2003 .
[5] B. Dwork. Normalized Period Matrices I: Plane Curves , 1971 .
[6] Rank one case of Dwork's conjecture , 2000, math/0005308.
[7] B. Mazur. Frobenius and the Hodge filtration , 1972 .
[8] Bernard Dwork,et al. On the zeta function of a hypersurface , 1962 .
[9] Shaofang Hong. Newton polygons for L-functions of exponential sums of polynomials of degree six over finite fields , 2002 .
[10] B. Dwork. Normalized period matrices II , 1973 .
[11] Daqing Wan,et al. Dwork’s conjecture on unit root zeta functions , 1999, math/9911270.
[12] Michael Rosen,et al. A classical introduction to modern number theory , 1982, Graduate texts in mathematics.
[13] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[14] Steven Sperber,et al. ON THE p-ADIC THEORY OF EXPONENTIAL SUMS , 1986 .
[15] M. J,et al. VARIATION OF P -ADIC NEWTON POLYGONS FOR L-FUNCTIONS OF EXPONENTIAL SUMS , 2004 .
[16] Neal Koblitz,et al. Gauss sums and the p-adic F-function , 1979 .
[17] Steven Sperber,et al. Exponential sums and Newton polyhedra: Cohomology and estimates , 1989 .
[18] A. Robert,et al. A Course in p-adic Analysis , 2000 .
[19] B. Dwork. Bessel functions as $p$-adic functions of the argument , 1974 .
[20] S. Sperber,et al. p-Adic estimates for exponential sums , 1990 .