L-functions of twisted diagonal exponential sums over finite fields

Let Fq be the finite field of q elements with characteristic p and Fqm its extension of degree m. Fix a nontrivial additive character ψ and let Χ,...,Χ n be multiplicative characters of Fp. For f(x 1 ,....,x n ) ∈ F q [x 1 , x -1 1 x n , x n -1], one can form the twisted exponential sum S*m(Χ1,...,Χn,f). The corresponding L-function is defined by L*(X1,...,Xn, f;t) = exp(Σ∞Mm-0 S*m(Χ1,...,Χn,f)tm m) In this paper, by using the p-adic gamma function and the Gross-Koblitz formula on Gauss sums, we give an explicit formula for the L-function L* (Χ1,...,Χ f; t) if f is a Laurent diagonal polynomial. We also determine its p-adic Newton polygon.

[1]  Higher rank case of Dwork's conjecture , 2000, math/0005309.

[2]  Regular Article: Newton Polygons of L Functions Associated with Exponential Sums of Polynomials of Degree Four over Finite Fields , 2001 .

[3]  Daqing Wan,et al.  Newton polygons of zeta functions and L functions , 1993 .

[4]  Roger W. L. Yang Newton polygons of L-functions of polynomials of the form Xd+λX , 2003 .

[5]  B. Dwork Normalized Period Matrices I: Plane Curves , 1971 .

[6]  Rank one case of Dwork's conjecture , 2000, math/0005308.

[7]  B. Mazur Frobenius and the Hodge filtration , 1972 .

[8]  Bernard Dwork,et al.  On the zeta function of a hypersurface , 1962 .

[9]  Shaofang Hong Newton polygons for L-functions of exponential sums of polynomials of degree six over finite fields , 2002 .

[10]  B. Dwork Normalized period matrices II , 1973 .

[11]  Daqing Wan,et al.  Dwork’s conjecture on unit root zeta functions , 1999, math/9911270.

[12]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[13]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[14]  Steven Sperber,et al.  ON THE p-ADIC THEORY OF EXPONENTIAL SUMS , 1986 .

[15]  M. J,et al.  VARIATION OF P -ADIC NEWTON POLYGONS FOR L-FUNCTIONS OF EXPONENTIAL SUMS , 2004 .

[16]  Neal Koblitz,et al.  Gauss sums and the p-adic F-function , 1979 .

[17]  Steven Sperber,et al.  Exponential sums and Newton polyhedra: Cohomology and estimates , 1989 .

[18]  A. Robert,et al.  A Course in p-adic Analysis , 2000 .

[19]  B. Dwork Bessel functions as $p$-adic functions of the argument , 1974 .

[20]  S. Sperber,et al.  p-Adic estimates for exponential sums , 1990 .