Embedded pairs for optimal explicit strong stability preserving Runge-Kutta methods

We construct a family of embedded pairs for optimal strong stability preserving explicit Runge-Kutta methods of order $2 \leq p \leq 4$ to be used to obtain numerical solution of spatially discretized hyperbolic PDEs. In this construction, the goals include non-defective methods, large region of absolute stability, and optimal error measurement as defined in [5,19]. The new family of embedded pairs offer the ability for strong stability preserving (SSP) methods to adapt by varying the step-size based on the local error estimation while maintaining their inherent nonlinear stability properties. Through several numerical experiments, we assess the overall effectiveness in terms of precision versus work while also taking into consideration accuracy and stability.

[1]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[2]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[3]  J. Kraaijevanger Contractivity of Runge-Kutta methods , 1991 .

[4]  Gustaf Söderlind,et al.  Time-step selection algorithms: Adaptivity, control, and signal processing , 2006 .

[5]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[6]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[7]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[8]  Culbert B. Laney Computational Gasdynamics: Solution Averaging: Reconstruction–Evolution Methods , 1998 .

[9]  John N. Shadid,et al.  Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order , 2017, J. Sci. Comput..

[10]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[11]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[12]  Lawrence F. Shampine,et al.  Automatic selection of the initial step size for an ODE solver , 1987 .

[13]  L. Trefethen Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations , 1996 .

[14]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[15]  Matteo Parsani,et al.  Optimized Explicit Runge-Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems , 2012, SIAM J. Sci. Comput..

[16]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[17]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[18]  Gustaf Söderlind,et al.  Digital filters in adaptive time-stepping , 2003, TOMS.

[19]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[20]  R. Marel,et al.  Stability radius of polynomials occurring in the numerical solution of initial value problems , 1990 .

[21]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[22]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[23]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[24]  Kjell Gustafsson,et al.  Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods , 1991, TOMS.

[25]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[26]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[27]  Gustaf Söderlind,et al.  The automatic control of numerical integration , 1998 .

[28]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[29]  J. Hesthaven Numerical Methods for Conservation Laws: From Analysis to Algorithms , 2017 .

[30]  Inmaculada Higueras,et al.  Optimal Monotonicity-Preserving Perturbations of a Given Runge–Kutta Method , 2018, J. Sci. Comput..

[31]  L. Shampine,et al.  A 3(2) pair of Runge - Kutta formulas , 1989 .

[32]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[33]  Colin B. Macdonald,et al.  Constructing high-order Runge-Kutta methods with embedded strong-stability-preserving pairs , 2003 .

[34]  Gustaf Söderlind,et al.  Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.

[35]  R. Lewis,et al.  Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .

[36]  A. Iserles A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .