Embedded pairs for optimal explicit strong stability preserving Runge-Kutta methods
暂无分享,去创建一个
[1] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[2] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[3] J. Kraaijevanger. Contractivity of Runge-Kutta methods , 1991 .
[4] Gustaf Söderlind,et al. Time-step selection algorithms: Adaptivity, control, and signal processing , 2006 .
[5] Uri M. Ascher,et al. Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .
[6] Carol S. Woodward,et al. Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..
[7] M. Carpenter,et al. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .
[8] Culbert B. Laney. Computational Gasdynamics: Solution Averaging: Reconstruction–Evolution Methods , 1998 .
[9] John N. Shadid,et al. Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order , 2017, J. Sci. Comput..
[10] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[11] David I. Ketcheson,et al. Strong stability preserving runge-kutta and multistep time discretizations , 2011 .
[12] Lawrence F. Shampine,et al. Automatic selection of the initial step size for an ODE solver , 1987 .
[13] L. Trefethen. Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations , 1996 .
[14] J. Verwer,et al. Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .
[15] Matteo Parsani,et al. Optimized Explicit Runge-Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems , 2012, SIAM J. Sci. Comput..
[16] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[17] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .
[18] Gustaf Söderlind,et al. Digital filters in adaptive time-stepping , 2003, TOMS.
[19] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[20] R. Marel,et al. Stability radius of polynomials occurring in the numerical solution of initial value problems , 1990 .
[21] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[22] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[23] J. Dormand,et al. High order embedded Runge-Kutta formulae , 1981 .
[24] Kjell Gustafsson,et al. Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods , 1991, TOMS.
[25] Steven J. Ruuth,et al. A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..
[26] David I. Ketcheson,et al. Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..
[27] Gustaf Söderlind,et al. The automatic control of numerical integration , 1998 .
[28] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[29] J. Hesthaven. Numerical Methods for Conservation Laws: From Analysis to Algorithms , 2017 .
[30] Inmaculada Higueras,et al. Optimal Monotonicity-Preserving Perturbations of a Given Runge–Kutta Method , 2018, J. Sci. Comput..
[31] L. Shampine,et al. A 3(2) pair of Runge - Kutta formulas , 1989 .
[32] Nancy Wilkins-Diehr,et al. XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.
[33] Colin B. Macdonald,et al. Constructing high-order Runge-Kutta methods with embedded strong-stability-preserving pairs , 2003 .
[34] Gustaf Söderlind,et al. Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.
[35] R. Lewis,et al. Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .
[36] A. Iserles. A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .