Exploring Lorenz Dominance

Multicriteria optimization based on Pareto dominance becomes ineffective as the number of objectives increases. We analyze an alternative offered by Lorenz dominance for multiobjective optimization. Our aim is to study whether Lorenz dominance improves the scalability of evolutionary techniques. The set of Lorenz-optimal solutions is a subset of Pareto-optimal solutions. Experiments indicate that the Lorenz-optimal set contains only those optimal solutions that equally optimize all criteria. Evolutionary optimization algorithms based on Lorenz dominance usually are able to detect optimal solutions even when the number of objectives is large (m > 3).

[1]  Hartmut Schmeck,et al.  In Search of Equitable Solutions Using Multi-objective Evolutionary Algorithms , 2010, PPSN.

[2]  Hanan Luss,et al.  On Equitable Resource Allocation Problems: A Lexicographic Minimax Approach , 1999, Oper. Res..

[3]  M. Farina,et al.  On the optimal solution definition for many-criteria optimization problems , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[4]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[5]  F. Yalaoui,et al.  BUFFERS SIZING IN ASSEMBLY LINES USING A LORENZ NON-DOMINATED SORTING GENETIC ALGORITHM , 2011 .

[6]  Michael M. Kostreva,et al.  Linear optimization with multiple equitable criteria , 1999, RAIRO Oper. Res..

[7]  Lionel Amodeo,et al.  New multi-objective method to solve reentrant hybrid flow shop scheduling problem , 2010, Eur. J. Oper. Res..

[8]  Lionel Amodeo,et al.  Lorenz versus Pareto Dominance in a Single Machine Scheduling Problem with Rejection , 2011, EMO.

[9]  Yaochu Jin,et al.  A Critical Survey of Performance Indices for Multi-Objective Optimisation , 2003 .

[10]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[11]  Adam Wierzbicki,et al.  Equitable aggregations and multiple criteria analysis , 2004, Eur. J. Oper. Res..

[12]  P. Hingston,et al.  A Scalable Multi-objective Test Problem Toolkit ( corrected version : 22 June 2005 ) , 2005 .

[13]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[14]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.