Spatial Finite Non-gaussian Mixture for Color Image Segmentation

A new color image segmentation algorithm based on the integration of spatial information into finite generalized Dirichlet mixture models is presented. The integration of spatial information is done via the consideration of image pixels neighborhoods. The segmentation model presented is learned using maximum likelihood estimation within an expectation maximization (EM) optimization framework. The obtained results, evaluated quantitatively, using real images are very encouraging and are better than those obtained using similar approaches.

[1]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[2]  Nizar Bouguila,et al.  Unsupervised Feature Selection for Accurate Recommendation of High-Dimensional Image Data , 2007, NIPS.

[3]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[4]  Mustafa Ozden,et al.  A color image segmentation approach for content-based image retrieval , 2007, Pattern Recognit..

[5]  Miin-Shen Yang,et al.  Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation , 2008, Pattern Recognit. Lett..

[6]  Nizar Bouguila,et al.  Dirichlet-based probability model applied to human skin detection [image skin detection] , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[8]  Nizar Bouguila,et al.  A hybrid SEM algorithm for high-dimensional unsupervised learning using a finite generalized Dirichlet mixture , 2006, IEEE Transactions on Image Processing.

[9]  Shankar M. Krishnan,et al.  Image segmentation using finite mixtures and spatial information , 2004, Image Vis. Comput..

[10]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[11]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[12]  Azriel Rosenfeld,et al.  Hierarchical Image Analysis Using Irregular Tessellations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Hui Zhang,et al.  Image segmentation evaluation: A survey of unsupervised methods , 2008, Comput. Vis. Image Underst..

[14]  Henk L. Muller,et al.  Evaluating Image Segmentation Algorithms Using the Pareto Front , 2002, ECCV.

[15]  Martial Hebert,et al.  Toward Objective Evaluation of Image Segmentation Algorithms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Nizar Bouguila,et al.  Finite Gamma mixture modelling using minimum message length inference: application to SAR image analysis , 2009 .

[17]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[18]  Nizar Bouguila,et al.  Finite Generalized Gaussian Mixture Modeling and Applications to Image and Video Foreground Segmentation , 2007, Fourth Canadian Conference on Computer and Robot Vision (CRV '07).

[19]  Nizar Bouguila,et al.  Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application , 2004, IEEE Transactions on Image Processing.

[20]  Jiebo Luo,et al.  On the application of Gibbs random field in image processing: from segmentation to enhancement , 1995, J. Electronic Imaging.

[21]  Nizar Bouguila,et al.  Unsupervised selection of a finite Dirichlet mixture model: an MML-based approach , 2006, IEEE Transactions on Knowledge and Data Engineering.

[22]  Nizar Bouguila,et al.  Novel Mixtures Based on the Dirichlet Distribution: Application to Data and Image Classification , 2003, MLDM.

[23]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[24]  Jon Sticklen,et al.  Knowledge-based segmentation of Landsat images , 1991, IEEE Trans. Geosci. Remote. Sens..

[25]  Kevin W. Bowyer,et al.  Evaluation of Texture Segmentation Algorithms , 1999, CVPR.

[26]  Rangaraj M. Rangayyan,et al.  A segmentation-based lossless image coding method for high-resolution medical image compression , 1997, IEEE Transactions on Medical Imaging.

[27]  Tzong-Jer Chen,et al.  Fuzzy c-means clustering with spatial information for image segmentation , 2006, Comput. Medical Imaging Graph..

[28]  Tzu-Tsung Wong,et al.  Generalized Dirichlet distribution in Bayesian analysis , 1998, Appl. Math. Comput..

[29]  Werner von Seelen,et al.  Image processing and behavior planning for intelligent vehicles , 2003, IEEE Trans. Ind. Electron..

[30]  Ron Kikinis,et al.  Markov random field segmentation of brain MR images , 1997, IEEE Transactions on Medical Imaging.

[31]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[32]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[34]  Nizar Bouguila,et al.  Using unsupervised learning of a finite Dirichlet mixture model to improve pattern recognition applications , 2005, Pattern Recognit. Lett..

[35]  Allen,et al.  LIST OF REFERENCES , 2004 .

[36]  Nizar Bouguila,et al.  On Fitting Finite Dirichlet Mixture Using ECM and MML , 2005, ICAPR.

[37]  Paola Campadelli,et al.  Quantitative evaluation of color image segmentation results , 1998, Pattern Recognit. Lett..

[38]  Majid Mirmehdi,et al.  Segmentation of Color Textures , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Kannan,et al.  ON IMAGE SEGMENTATION TECHNIQUES , 2022 .

[40]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Nikolas P. Galatsanos,et al.  A Class-Adaptive Spatially Variant Mixture Model for Image Segmentation , 2007, IEEE Transactions on Image Processing.

[42]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  John Hannah,et al.  IEEE International Conference on Image Processing (ICIP) , 1997 .

[44]  Robert J. Connor,et al.  Concepts of Independence for Proportions with a Generalization of the Dirichlet Distribution , 1969 .

[45]  P. Deb Finite Mixture Models , 2008 .

[46]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[47]  Geoffrey J. McLachlan,et al.  Speeding up the EM algorithm for mixture model-based segmentation of magnetic resonance images , 2004, Pattern Recognit..

[48]  Thrasyvoulos N. Pappas,et al.  An Adaptive Clustering Algorithm For Image Segmentation , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[49]  D. Ziou,et al.  A powerful finite mixture model based on the generalized Dirichlet distribution: unsupervised learning and applications , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[50]  Nizar Bouguila,et al.  A probabilistic approach for shadows modeling and detection , 2005, IEEE International Conference on Image Processing 2005.

[51]  Sameer Singh International Conference on Advances in Pattern Recognition , 1999, Springer London.

[52]  Jianbo Shi,et al.  Segmentation given partial grouping constraints , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Yee-Hong Yang,et al.  Multiresolution Color Image Segmentation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Nizar Bouguila,et al.  Bayesian hybrid generative discriminative learning based on finite Liouville mixture models , 2011, Pattern Recognit..

[55]  Murat Kunt,et al.  Content-based retrieval from image databases: current solutions and future directions , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).