3D frequency-domain finite-difference viscoelastic-wave modeling using weighted average 27-point operators with optimal coefficients
暂无分享,去创建一个
[1] I. Štekl,et al. Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .
[2] K. Marfurt. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .
[3] Hicks,et al. Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .
[4] A. Fichtner. Full Seismic Waveform Modelling and Inversion , 2011 .
[5] Changsoo Shin,et al. Improved frequency-domain elastic wave modeling using weighted-averaging difference operators , 2000 .
[6] S LiXiaoye. An overview of SuperLU , 2005 .
[7] R. Pratt. Frequency-domain elastic wave modeling by finite differences : a tool for crosshole seismic imaging , 1990 .
[8] Jeroen Tromp,et al. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .
[9] John B. Schneider,et al. Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation , 1996 .
[10] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[11] Jonathan B. Ajo-Franklin,et al. Frequency-Domain Modeling Techniques for the Scalar Wave Equation : An Introduction , 2005 .
[12] D. Komatitsch,et al. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .
[13] John P. Castagna,et al. Offset-dependent reflectivity : theory and practice of AVO analysis , 1993 .
[14] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[15] Pascal Hénon,et al. PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems , 2002, Parallel Comput..
[16] W. Menke. Geophysical data analysis : discrete inverse theory , 1984 .
[17] Moshe Reshef,et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .
[18] I. Tsvankin,et al. Time-Domain Finite-Difference Modeling for Attenuative Anisotropic Media , 2015 .
[19] José M. Carcione,et al. Seismic modeling in viscoelastic media , 1993 .
[20] R. Borcherdt. Viscoelastic Waves in Layered Media , 2009 .
[21] Patrick Amestoy,et al. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..
[22] Tamara G. Kolda,et al. Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..
[23] Xiaoye S. Li,et al. An overview of SuperLU: Algorithms, implementation, and user interface , 2003, TOMS.
[24] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[25] M. Batzle,et al. Seismic Wave Attenuation in Carbonates , 2009 .
[26] C. Shin,et al. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .
[27] Bernard Giroux. Performance of convolutional perfectly matched layers for pseudospectral time domain poroviscoelastic schemes , 2012, Comput. Geosci..
[28] Ludovic Métivier,et al. Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation , 2015 .
[29] Joakim O. Blanch,et al. Viscoelastic finite-difference modeling , 1994 .
[30] C. Tsogka,et al. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .
[31] S. Operto,et al. Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .
[32] R. Higdon. Absorbing boundary conditions for elastic waves , 1991 .
[33] T. Mukerji,et al. Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk , 2005 .
[34] R. Pratt. Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .
[35] José M. Carcione,et al. Viscoacoustic wave propagation simulation in the earth , 1988 .
[36] S. Treitel,et al. A REVIEW OF LEAST-SQUARES INVERSION AND ITS APPLICATION TO GEOPHYSICAL PROBLEMS* , 1984 .
[37] W. Pilant. Elastic waves in the earth , 1979 .
[38] R. Hofmann,et al. Fluid mobility and frequency-dependent seismic velocity — Direct measurements , 2006 .
[39] J. Sochacki. Absorbing boundary conditions for the elastic wave equations , 1988 .
[40] Stephen D. Gedney,et al. Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .
[41] Azzam Haidar,et al. Seismic wave modeling for seismic imaging , 2009 .
[42] Jianlin Xia,et al. Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3-D anisotropic media , 2012 .
[43] James Demmel,et al. SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.
[44] S. Operto,et al. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .
[45] Olaf Schenk,et al. Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..
[46] Thomas Bohlen,et al. Paralel 3-D viscoelastic finite difference seismic modelling , 2002 .
[47] Olav Holberg,et al. COMPUTATIONAL ASPECTS OF THE CHOICE OF OPERATOR AND SAMPLING INTERVAL FOR NUMERICAL DIFFERENTIATION IN LARGE-SCALE SIMULATION OF WAVE PHENOMENA* , 1987 .
[48] Roland Martin,et al. An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation , 2009 .
[49] José M. Carcione,et al. Wave fields in real media : wave propagation in anisotropic, anelastic, porous and electromagnetic media , 2007 .
[50] Jean Virieux,et al. Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media , 2009 .
[51] Romain Brossier,et al. Parsimonious finite-volume frequency-domain method for 2-D P–SV-wave modelling , 2008 .
[52] Patrick Amestoy,et al. Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..
[53] A. Giannopoulos,et al. A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .
[54] C. Shin,et al. A frequency‐space 2-D scalar wave extrapolator using extended 25-point finite‐difference operator , 1998 .