3D frequency-domain finite-difference viscoelastic-wave modeling using weighted average 27-point operators with optimal coefficients

ABSTRACTExperimental data suggest that the viscoelastic behavior of rocks is more easily and accurately described in the frequency domain than in the time domain, supporting the idea of simulating seismic wave propagation in the frequency domain. We evaluated weighted-averaged 27-point finite-difference operators for 3D viscoelastic wave modeling in the frequency domain. Within the proposed framework, we developed general equations for normalized phase velocities that can be used with arbitrary finite-difference operators. Three sets of weighting coefficients for second-order central finite-difference operators that minimize the numerical dispersion for up to five grid points per wavelength were found using a damped least-squares (LS) criterion as well as a global optimization scheme based on l1- and l2-norm criteria. The three sets produced very similar dispersion curves, and improvement provided by global optimization appeared marginal in this respect. We also evaluated a discrete form for the heterogen...

[1]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[2]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[3]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[4]  A. Fichtner Full Seismic Waveform Modelling and Inversion , 2011 .

[5]  Changsoo Shin,et al.  Improved frequency-domain elastic wave modeling using weighted-averaging difference operators , 2000 .

[6]  S LiXiaoye An overview of SuperLU , 2005 .

[7]  R. Pratt Frequency-domain elastic wave modeling by finite differences : a tool for crosshole seismic imaging , 1990 .

[8]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[9]  John B. Schneider,et al.  Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation , 1996 .

[10]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[11]  Jonathan B. Ajo-Franklin,et al.  Frequency-Domain Modeling Techniques for the Scalar Wave Equation : An Introduction , 2005 .

[12]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[13]  John P. Castagna,et al.  Offset-dependent reflectivity : theory and practice of AVO analysis , 1993 .

[14]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[15]  Pascal Hénon,et al.  PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems , 2002, Parallel Comput..

[16]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[17]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[18]  I. Tsvankin,et al.  Time-Domain Finite-Difference Modeling for Attenuative Anisotropic Media , 2015 .

[19]  José M. Carcione,et al.  Seismic modeling in viscoelastic media , 1993 .

[20]  R. Borcherdt Viscoelastic Waves in Layered Media , 2009 .

[21]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[22]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[23]  Xiaoye S. Li,et al.  An overview of SuperLU: Algorithms, implementation, and user interface , 2003, TOMS.

[24]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[25]  M. Batzle,et al.  Seismic Wave Attenuation in Carbonates , 2009 .

[26]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[27]  Bernard Giroux Performance of convolutional perfectly matched layers for pseudospectral time domain poroviscoelastic schemes , 2012, Comput. Geosci..

[28]  Ludovic Métivier,et al.  Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation , 2015 .

[29]  Joakim O. Blanch,et al.  Viscoelastic finite-difference modeling , 1994 .

[30]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[31]  S. Operto,et al.  Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .

[32]  R. Higdon Absorbing boundary conditions for elastic waves , 1991 .

[33]  T. Mukerji,et al.  Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk , 2005 .

[34]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[35]  José M. Carcione,et al.  Viscoacoustic wave propagation simulation in the earth , 1988 .

[36]  S. Treitel,et al.  A REVIEW OF LEAST-SQUARES INVERSION AND ITS APPLICATION TO GEOPHYSICAL PROBLEMS* , 1984 .

[37]  W. Pilant Elastic waves in the earth , 1979 .

[38]  R. Hofmann,et al.  Fluid mobility and frequency-dependent seismic velocity — Direct measurements , 2006 .

[39]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[40]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[41]  Azzam Haidar,et al.  Seismic wave modeling for seismic imaging , 2009 .

[42]  Jianlin Xia,et al.  Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3-D anisotropic media , 2012 .

[43]  James Demmel,et al.  SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.

[44]  S. Operto,et al.  3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .

[45]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[46]  Thomas Bohlen,et al.  Paralel 3-D viscoelastic finite difference seismic modelling , 2002 .

[47]  Olav Holberg,et al.  COMPUTATIONAL ASPECTS OF THE CHOICE OF OPERATOR AND SAMPLING INTERVAL FOR NUMERICAL DIFFERENTIATION IN LARGE-SCALE SIMULATION OF WAVE PHENOMENA* , 1987 .

[48]  Roland Martin,et al.  An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation , 2009 .

[49]  José M. Carcione,et al.  Wave fields in real media : wave propagation in anisotropic, anelastic, porous and electromagnetic media , 2007 .

[50]  Jean Virieux,et al.  Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media , 2009 .

[51]  Romain Brossier,et al.  Parsimonious finite-volume frequency-domain method for 2-D P–SV-wave modelling , 2008 .

[52]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[53]  A. Giannopoulos,et al.  A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .

[54]  C. Shin,et al.  A frequency‐space 2-D scalar wave extrapolator using extended 25-point finite‐difference operator , 1998 .