Parameterized Recursion Theory - A Tool for the Systematic Classification of Specification Methods

We examine four specification methods with increasing expressiveness. Parameterized recursion theory allows to characterize the power of parameterization in the methods, using a computational model based on Moschovakis’ search computability. The four specification methods can be characterized by four different notions of semicomputable parameterized abstract data type, which differ in the availability of the parameter algebra and of nondeterminism.

[1]  Peter Burmeister,et al.  Partial algebras—survey of a unifying approach towards a two-valued model theory for partial algebras , 1982 .

[2]  J. V. Tucker,et al.  Many-sorted logic and its applications , 1993 .

[3]  Jan A. Bergstra,et al.  Initial Algebra Specifications for Parametrized Data Types , 1981, J. Inf. Process. Cybern..

[4]  Peter Padawitz,et al.  Parameter-Preserving Data Type Specifications , 1987, J. Comput. Syst. Sci..

[5]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[6]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Specification 1 , 1985, EATCS Monographs on Theoretical Computer Science.

[7]  Jiří Rosický,et al.  Concrete categories and infinitary languages , 1981 .

[8]  Simon L. Peyton Jones,et al.  The Implementation of Functional Programming Languages , 1987 .

[9]  Andrei P. Ershov Abstract computability on algebraic structures , 1979, Algorithms in Modern Mathematics and Computer Science.

[10]  P. A. Subrahmanyam Nondeterminism in Abstract Data Types , 1981, ICALP.

[11]  José Meseguer,et al.  Order-Sorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations , 1992, Theor. Comput. Sci..

[12]  Heinz Kaphengst,et al.  What is Computable for Abstract Data Types? , 1981, FCT.

[13]  Andrzej Tarlecki,et al.  On the Existence of Free Models in Abstract Algebraic Institutuons , 1985, Theor. Comput. Sci..

[14]  K. Benecke,et al.  Equational partiality , 1983 .

[15]  Jan A. Bergstra,et al.  Algebraic Specifications of Computable and Semicomputable Data Types , 1987, Theor. Comput. Sci..

[16]  Peter Padawitz,et al.  Computing in Horn Clause Theories , 1988, EATCS Monographs on Theoretical Computer Science.

[17]  Horst Reichel,et al.  Initial Computability, Algebraic Specifications, and Partial Algebras , 1987 .

[18]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[19]  José Meseguer,et al.  EQLOG: Equality, Types, and Generic Modules For Logic Programming , 1986, Logic Programming: Functions, Relations, and Equations.

[20]  Ulrich L. Hupbach Abstract Implementation of Abstract Data Types , 1980, MFCS.

[21]  James W. Thatcher,et al.  Data Type Specification: Parameterization and the Power of Specification Techniques , 1982, TOPL.

[22]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[23]  Jiří Rosický,et al.  Semi-initial completions , 1986 .

[24]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[25]  Jan A. Bergstra,et al.  Algebraic Specifications for Parametrized Data Types with Minimal Parameter and Target Algebras , 1982, ICALP.

[26]  Grzegorz Jarzembski Programs in Partial Algebras , 1993, Theor. Comput. Sci..

[27]  José Meseguer,et al.  Remarks on remarks on many-sorted equational logic , 1987, SIGP.

[28]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[29]  Yiannis N. Moschovakis,et al.  Abstract first order computability. II , 1969 .

[30]  Harvey M. Friedman,et al.  Algorithmic Procedures, Generalized Turing Algorithms, and Elementary Recursion Theory , 1971 .

[31]  A. I. Mal'tsev CONSTRUCTIVE ALGEBRAS I , 1961 .