Meshless Thin-shell Simulation Based on Global

This paper presents a new approach to the physically-based thin-shell simulation of point-sampled geometry via explicit, global conformal point-surface pa- rameterization and meshless dynamics. The point-based global parameterization is founded upon the rigorous mathematics of Riemann surface theory and Hodge theory. The parameterization is globally conformal everywhere except for a minimum number of zero points. Within our parameterization framework, any well-sampled point surface is functionally equivalent to a manifold, en- abling popular and powerful surface-based modeling and physically-based simulation tools to be readily adapted for point geometry processing and animation. In addition, we propose a meshless surface computational paradigm in which the partial differential equations (for dynamic physical simulation) can be applied and solved directly over point samples via Moving Least Squares (MLS) shape functions defined on the global parametric domain without explicit connectivity information. The global conformal parameterization provides a common domain to facilitate accurate meshless simulation and efficient discontinuity modeling for complex branching cracks. Through our experiments on thin-shell elastic deformation and fracture simulation, we demonstrate that our integrative method is very natural, and that it has great potential to further broaden the application scope of point-sampled geometry in graphics and relevant fields.

[1]  C. Siegel,et al.  Lectures on quadratic forms , 1955 .

[2]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[3]  Dimitris N. Metaxas,et al.  Dynamic deformation of solid primitives with constraints , 1992, SIGGRAPH.

[4]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[5]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[6]  Mathieu Desbrun,et al.  Animating soft substances with implicit surfaces , 1995, SIGGRAPH.

[7]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[8]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[9]  T. Belytschko,et al.  Analysis of thin shells by the Element-Free Galerkin method , 1996 .

[10]  Mark A Fleming,et al.  Continuous meshless approximations for nonconvex bodies by diffraction and transparency , 1996 .

[11]  S. Yau,et al.  Lectures on Harmonic Maps , 1997 .

[12]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[13]  Koichi Hirota,et al.  Generation of crack patterns with a physical model , 1998, The Visual Computer.

[14]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[15]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[16]  M. Shephard,et al.  Automatic generation of octree-based three-dimensional discretizations for Partition of Unity methods , 2000 .

[17]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[18]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[19]  Andrew Witkin,et al.  Fast and Controllable Simulation of the Shattering of Brittle Objects , 2001 .

[20]  J. Jost Compact Riemann Surfaces , 2002 .

[21]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[22]  Matthias Zwicker,et al.  Pointshop 3D: an interactive system for point-based surface editing , 2002, SIGGRAPH.

[23]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[24]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[25]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[26]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[27]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[28]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[29]  Yalin Wang,et al.  Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.

[30]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[31]  Hong Qin,et al.  Scalar-function-driven editing on point set surfaces , 2004, IEEE Computer Graphics and Applications.

[32]  Matthias Zwicker,et al.  Meshing Point Clouds Using Spherical Parameterization , 2004, PBG.

[33]  Martin Rumpf,et al.  Finite Elements on Point Based Surfaces , 2004, PBG.

[34]  Mathieu Desbrun,et al.  Removing excess topology from isosurfaces , 2004, TOGS.

[35]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, SIGGRAPH 2004.

[36]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[37]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[38]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[39]  Leonidas J. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[40]  Bruno Lévy,et al.  Master-element vector irradiance for large tessellated models , 2005, GRAPHITE.

[41]  John C. Hart,et al.  A sampling theorem for MLS surfaces , 2005, Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005..

[42]  Markus H. Gross,et al.  Efficient Animation of Point‐Sampled Thin Shells , 2005, Comput. Graph. Forum.

[43]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[44]  Hong Qin,et al.  Real‐time meshless deformation , 2005, Comput. Animat. Virtual Worlds.