Piecewise deterministic simulated annealing
暂无分享,去创建一个
[1] P. Meyer,et al. Sur les inegalites de Sobolev logarithmiques. I , 1982 .
[2] M. Freidlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[3] Bruce E. Hajek,et al. Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..
[4] D. Stroock,et al. Asymptotics of the spectral gap with applications to the theory of simulated annealing , 1989 .
[5] O. Catoni. Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules , 1992 .
[6] L. Miclo,et al. Recuit simulé sur $\mathbb {R}^n$. Étude de l’évolution de l’énergie libre , 1992 .
[7] Robert L. Smith,et al. Hit-and-Run Algorithms for Generating Multivariate Distributions , 1993, Math. Oper. Res..
[8] John H. Kalivas,et al. Adaption of simulated annealing to chemical optimization problems , 1995 .
[9] Radek Erban,et al. From Individual to Collective Behavior in Bacterial Chemotaxis , 2004, SIAM J. Appl. Math..
[10] A. Bovier,et al. Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times , 2004 .
[11] A. Bovier,et al. Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues , 2005 .
[12] T. Lelièvre,et al. An efficient sampling algorithm for variational Monte Carlo. , 2006, The Journal of chemical physics.
[13] F. Malrieu,et al. Quantitative Estimates for the Long-Time Behavior of an Ergodic Variant of the Telegraph Process , 2010, Advances in Applied Probability.
[14] T. Lelièvre,et al. On the length of one-dimensional reactive paths , 2012, 1206.0949.
[15] M. Benaim,et al. Quantitative ergodicity for some switched dynamical systems , 2012, 1204.1922.
[16] L. Miclo,et al. Étude spectrale minutieuse de processus moins indécis que les autres , 2012, 1209.3588.
[17] G. Pavliotis,et al. Optimal Non-reversible Linear Drift for the Convergence to Equilibrium of a Diffusion , 2012, 1212.0876.
[18] Pierre Monmarch'e. Hypocoercive relaxation to equilibrium for some kinetic models via a third order differential inequality , 2013, 1306.4548.
[19] Persi Diaconis,et al. On the spectral analysis of second-order Markov chains , 2013 .
[20] Tony Lelievre,et al. Two mathematical tools to analyze metastable stochastic processes , 2012, 1201.3775.
[21] Alexandre Genadot,et al. Piecewise deterministic Markov process - recent results , 2013, 1309.6061.
[22] Sébastien Gadat,et al. Long time behaviour and stationary regime of memory gradient diffusions , 2014 .
[23] C. Schmeiser,et al. Confinement by biased velocity jumps: aggregation of Escherichia coli , 2014, 1404.0643.
[24] N. Ratanov. Telegraph Processes with Random Jumps and Complete Market Models , 2013, Methodology and Computing in Applied Probability.
[25] Pierre Monmarché,et al. Hypocoercivity in metastable settings and kinetic simulated annealing , 2015, 1502.07263.