Piecewise deterministic simulated annealing

Given an energy potential on the Euclidian space, a piecewise deterministic Markov process is designed to sample the corresponding Gibbs measure. In dimension one an Eyring-Kramers formula is obtained for the exit time of the domain of a local minimum at low temperature, and a necessary and sufficient condition is given on the cooling schedule in a simulated annealing algorithm to ensure the process converges to the set of global minima. This condition is similar to the classical one for diffusions and involves the critical depth of the potential. In higher dimension a non optimal sufficient condition is obtained.

[1]  P. Meyer,et al.  Sur les inegalites de Sobolev logarithmiques. I , 1982 .

[2]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[3]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[4]  D. Stroock,et al.  Asymptotics of the spectral gap with applications to the theory of simulated annealing , 1989 .

[5]  O. Catoni Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules , 1992 .

[6]  L. Miclo,et al.  Recuit simulé sur $\mathbb {R}^n$. Étude de l’évolution de l’énergie libre , 1992 .

[7]  Robert L. Smith,et al.  Hit-and-Run Algorithms for Generating Multivariate Distributions , 1993, Math. Oper. Res..

[8]  John H. Kalivas,et al.  Adaption of simulated annealing to chemical optimization problems , 1995 .

[9]  Radek Erban,et al.  From Individual to Collective Behavior in Bacterial Chemotaxis , 2004, SIAM J. Appl. Math..

[10]  A. Bovier,et al.  Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times , 2004 .

[11]  A. Bovier,et al.  Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues , 2005 .

[12]  T. Lelièvre,et al.  An efficient sampling algorithm for variational Monte Carlo. , 2006, The Journal of chemical physics.

[13]  F. Malrieu,et al.  Quantitative Estimates for the Long-Time Behavior of an Ergodic Variant of the Telegraph Process , 2010, Advances in Applied Probability.

[14]  T. Lelièvre,et al.  On the length of one-dimensional reactive paths , 2012, 1206.0949.

[15]  M. Benaim,et al.  Quantitative ergodicity for some switched dynamical systems , 2012, 1204.1922.

[16]  L. Miclo,et al.  Étude spectrale minutieuse de processus moins indécis que les autres , 2012, 1209.3588.

[17]  G. Pavliotis,et al.  Optimal Non-reversible Linear Drift for the Convergence to Equilibrium of a Diffusion , 2012, 1212.0876.

[18]  Pierre Monmarch'e Hypocoercive relaxation to equilibrium for some kinetic models via a third order differential inequality , 2013, 1306.4548.

[19]  Persi Diaconis,et al.  On the spectral analysis of second-order Markov chains , 2013 .

[20]  Tony Lelievre,et al.  Two mathematical tools to analyze metastable stochastic processes , 2012, 1201.3775.

[21]  Alexandre Genadot,et al.  Piecewise deterministic Markov process - recent results , 2013, 1309.6061.

[22]  Sébastien Gadat,et al.  Long time behaviour and stationary regime of memory gradient diffusions , 2014 .

[23]  C. Schmeiser,et al.  Confinement by biased velocity jumps: aggregation of Escherichia coli , 2014, 1404.0643.

[24]  N. Ratanov Telegraph Processes with Random Jumps and Complete Market Models , 2013, Methodology and Computing in Applied Probability.

[25]  Pierre Monmarché,et al.  Hypocoercivity in metastable settings and kinetic simulated annealing , 2015, 1502.07263.