Numerical investigation of the water entry of cylinders without and with spin

We consider the water entry of horizontal cylinders with vertical impact velocity, either kept constant or freely falling, without and with spin, into quiescent water under the effect of gravity. We focus on the flow and cavity forming stages with non-dimensional submergence time $t$ , Froude numbers $Fr$ , spin ratios $\unicode[STIX]{x1D6FC}$ and mass ratios $m$ , all of $O(1)$ . We develop numerical simulations using a modified smoothed particle hydrodynamics method to obtain predictions for the impact kinematics and dynamics. These are in detailed agreement with available experiments. We elucidate the evolutions of the free surface, contact point positions, flow field, forces and trajectories and their dependence on $Fr$ , $\unicode[STIX]{x1D6FC}$ and $m$ . We define and quantify the contact point location $\unicode[STIX]{x1D703}(t)$ as a function of $Fr$ , clarifying the qualitative difference between sub- and supercritical $Fr$ and the observed absence of air-entrained trailing cavities at low $Fr$ . By subtracting the buoyancy associated with $\unicode[STIX]{x1D703}(t)$ , we show that, unlike the total drag, the remaining dynamic components are qualitatively similar for all $Fr$ . For a freely falling cylinder, we show that the total drag can be predicted from the constant velocity case with the same instantaneous velocity, providing a simple way to predict its trajectory based on the latter. The presence of spin results in lift, even when the asymmetry in $\unicode[STIX]{x1D703}$ is small. For fixed $\unicode[STIX]{x1D6FC}$ , lift increases with subcritical $Fr$ . For a freely falling cylinder, the lateral motion causes an appreciable asymmetry in $\unicode[STIX]{x1D703}$ and a reduction in lift.

[1]  Th. von Kármán,et al.  The impact on seaplane floats during landing , 1929 .

[2]  H. Wagner Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten , 1932 .

[3]  A. May Effect of Surface Condition of a Sphere on Its Water‐Entry Cavity , 1951 .

[4]  S. Chuang Experiments on Flat-Bottom Slamming , 1966 .

[5]  M. I. Gurevich,et al.  THE THEORY OF JETS IN AN IDEAL FLUID , 1967 .

[6]  Koichi Hagiwara,et al.  Fundamental Study of Wave Impact Loads on Ship Bow (3rd Report) , 1974 .

[7]  Albert May,et al.  Water Entry and the Cavity-Running Behavior of Missiles , 1975 .

[8]  K. Hagiwara,et al.  6. Fundamental Study of Wave Impact Loads on Ship Bow , 1976 .

[9]  M. Moghisi,et al.  An experimental investigation of the initial force of impact on a sphere striking a liquid surface , 1981, Journal of Fluid Mechanics.

[10]  M. Greenhow,et al.  Nonlinear-Free Surface Effects: Experiments and Theory , 1983 .

[11]  S. Dennis,et al.  Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder , 1985, Journal of Fluid Mechanics.

[12]  M. Coutanceau,et al.  Influence of rotation on the near-wake development behind an impulsively started circular cylinder , 1985, Journal of Fluid Mechanics.

[13]  M. Greenhow Water-entry and-exit of a horizontal circular cylinder* , 1988 .

[14]  S. Dennis,et al.  Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers , 1989 .

[15]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[16]  S. Dennis,et al.  Unsteady flow past a rotating circular cylinder at Reynolds numbers 103 and 104 , 1990, Journal of Fluid Mechanics.

[17]  Arne J. Pearlstein,et al.  Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion , 1993, Journal of Fluid Mechanics.

[18]  O. Faltinsen,et al.  Water entry of two-dimensional bodies , 1993, Journal of Fluid Mechanics.

[19]  R. Stacey New finite-difference methods for free surfaces with a stability analysis , 1994, Bulletin of the Seismological Society of America.

[20]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[21]  S. Attaway,et al.  Smoothed particle hydrodynamics stability analysis , 1995 .

[22]  D. Balsara von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms , 1995 .

[23]  Xiyun Lu The Early Stage of Development of the Wake behind a Circular Cylinder Impulsively Started into Rotatory and Rectilinear Motion , 1996 .

[24]  T. McMahon,et al.  A hydrodynamic model of locomotion in the Basilisk Lizard , 1996, Nature.

[25]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[26]  Myoungkyu Lee,et al.  Cavity dynamics in high-speed water entry , 1997 .

[27]  Ming‐Chung Lin,et al.  Simultaneous measurements of water impact on a two-dimensional body , 1997 .

[28]  Ming‐Chung Lin,et al.  Flow visualization and pressure characteristics of a cylinder for water impact , 1997 .

[29]  D. Yue,et al.  On the water impact of general two-dimensional sections , 1999 .

[30]  S. Mittal,et al.  Flow past a rotating cylinder , 2003, Journal of Fluid Mechanics.

[31]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[32]  A. Iafrati,et al.  Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies , 2003 .

[33]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[34]  T. Etoh,et al.  Impact jetting by a solid sphere , 2004, Journal of Fluid Mechanics.

[35]  C. Lévi-Strauss,et al.  Experimental investigation , 2013 .

[36]  G. Oger,et al.  Two-dimensional SPH simulations of wedge water entries , 2006, J. Comput. Phys..

[37]  Ho-Young Kim,et al.  Sinking of a horizontal cylinder. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[38]  O. Faltinsen,et al.  Water impact of horizontal circular cylinders and cylindrical shells , 2006 .

[39]  L. Luo,et al.  Characteristics of two-dimensional flow around a rotating circular cylinder near a plane wall , 2007 .

[40]  Odd M. Faltinsen,et al.  Water Entry and Exit of a Horizontal Circular Cylinder , 2007 .

[41]  L. Labraga,et al.  An Experimental Investigation of the Separation Points on a Circular Rotating Cylinder in Cross Flow , 2007 .

[42]  C. Clanet,et al.  Making a splash with water repellency , 2007, cond-mat/0701093.

[43]  Jakub K. Kominiarczuk,et al.  Cavity dynamics in water entry at low Froude numbers , 2009, Journal of Fluid Mechanics.

[44]  J. M. Bush,et al.  Water entry of small hydrophobic spheres , 2009, Journal of Fluid Mechanics.

[45]  A. Colagrossi,et al.  Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  B. Rogers,et al.  State-of-the-art of classical SPH for free-surface flows , 2010 .

[47]  Andrea Colagrossi,et al.  A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH , 2009, Comput. Phys. Commun..

[48]  A. Techet,et al.  A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres , 2009 .

[49]  Tim Gourlay,et al.  An investigation of slam events in two dimensions using smoothed particle hydrodynamics. , 2009 .

[50]  A. Techet,et al.  Water entry of spinning spheres , 2009, Journal of Fluid Mechanics.

[51]  Dick K. P. Yue,et al.  Conservative Volume-of-Fluid method for free-surface simulations on Cartesian-grids , 2010, J. Comput. Phys..

[52]  Yali Zhang A Level Set Immersed Boundary Method for Water Entry and Exit , 2010 .

[53]  Areti Kiara,et al.  Analysis of the smoothed particle hydrodynamics method for free-surface flows , 2010 .

[54]  F. Avellan,et al.  SPH high-performance computing simulations of rigid solids impacting the free-surface of water , 2010 .

[55]  T. Yung,et al.  On the Physics of Vapor/Liquid Interaction During Impact on Solids , 2010 .

[56]  A. Techet,et al.  Water entry of spinning hydrophobic and hydrophilic spheres , 2011 .

[57]  Dick K. P. Yue,et al.  Boundary data immersion method for Cartesian-grid simulations of fluid-body interaction problems , 2011, J. Comput. Phys..

[58]  W. Dehnen,et al.  Improving convergence in smoothed particle hydrodynamics simulations without pairing instability , 2012, 1204.2471.

[59]  P. Hicks,et al.  Air trapping at impact of a rigid sphere onto a liquid , 2012, Journal of Fluid Mechanics.

[60]  Brenden P. Epps,et al.  Unsteady forces on spheres during free-surface water entry , 2012, Journal of Fluid Mechanics.

[61]  G. Birkhoff,et al.  Jets, Wakes, and Cavities , 2012 .

[62]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[63]  D. Yue,et al.  SPH for incompressible free-surface flows. Part I: Error analysis of the basic assumptions , 2013 .

[64]  D. Yue,et al.  SPH for incompressible free-surface flows. Part II: Performance of a modified SPH method , 2013 .

[65]  Salvatore Marrone,et al.  An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers , 2013, J. Comput. Phys..

[66]  E. Sanmiguel-Rojas,et al.  On the development of lift and drag in a rotating and translating cylinder , 2014 .

[67]  J. Ghazanfarian,et al.  Numerical Simulation of Water-Entry and Sedimentation of an Elliptic Cylinder Using Smoothed-Particle Hydrodynamics Method , 2014 .

[68]  Brenden P. Epps,et al.  Water Entry of Projectiles , 2014 .

[69]  H. Ding,et al.  On the contact-line pinning in cavity formation during solid–liquid impact , 2015, Journal of Fluid Mechanics.