Yeast one-hybrid screen of a thymus epithelial library identifies ZBTB7A as a regulator of thymic insulin expression.

[1]  C. Polychronakos,et al.  Understanding type 1 diabetes through genetics: advances and prospects , 2011, Nature Reviews Genetics.

[2]  R. Kurokawa,et al.  Identification of Ewing’s sarcoma protein as a G‐quadruplex DNA‐ and RNA‐binding protein , 2011, The FEBS journal.

[3]  M. Breslin,et al.  Both Polymorphic Variable Number of Tandem Repeats and Autoimmune Regulator Modulate Differential Expression of Insulin in Human Thymic Epithelial Cells , 2010, Diabetes.

[4]  K. Kataoka,et al.  Insulin Transactivator MafA Regulates Intrathymic Expression of Insulin and Affects Susceptibility to Type 1 Diabetes , 2010, Diabetes.

[5]  V. Gersuk,et al.  Insulin gene VNTR genotype associates with frequency and phenotype of the autoimmune response to proinsulin , 2010, Genes and Immunity.

[6]  K. Docherty,et al.  An engineered zinc finger protein reveals a role for the insulin VNTR in the regulation of the insulin and adjacent IGF2 genes , 2009, FEBS letters.

[7]  M. Trucco,et al.  Thymus‐specific deletion of insulin induces autoimmune diabetes , 2009, The EMBO journal.

[8]  C. Polychronakos,et al.  Regulation of insulin gene expression by cytokines and cell–cell interactions in mouse medullary thymic epithelial cells , 2009, Diabetologia.

[9]  Y. Mu,et al.  The DEAD‐box RNA helicase DDX1 interacts with RelA and enhances nuclear factor kappaB‐mediated transcription , 2009, Journal of cellular biochemistry.

[10]  B. Jeon,et al.  Proto-oncogene FBI-1 (Pokemon/ZBTB7A) Represses Transcription of the Tumor Suppressor Rb Gene via Binding Competition with Sp1 and Recruitment of Co-repressors* , 2008, Journal of Biological Chemistry.

[11]  C. Benoist,et al.  Ectopic expression of peripheral-tissue antigens in the thymic epithelium: Probabilistic, monoallelic, misinitiated , 2008, Proceedings of the National Academy of Sciences.

[12]  W. Reith,et al.  Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. , 2008, Immunity.

[13]  G. Felsenfeld,et al.  Vezf1 regulates genomic DNA methylation through its effects on expression of DNA methyltransferase Dnmt3b. , 2008, Genes & development.

[14]  J. Todd,et al.  A Human Type 1 Diabetes Susceptibility Locus Maps to Chromosome 21q22.3 , 2008, Diabetes.

[15]  C. Polychronakos,et al.  The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. , 2008, Trends in molecular medicine.

[16]  A. Ishida-Yamamoto,et al.  Alopecia, neurological defects, and endocrinopathy syndrome caused by decreased expression of RBM28, a nucleolar protein associated with ribosome biogenesis. , 2008, American journal of human genetics.

[17]  K. Jeang,et al.  Inflammatory cardiac valvulitis in TAX1BP1‐deficient mice through selective NF‐κB activation , 2008, The EMBO journal.

[18]  X. Ke,et al.  An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus , 2007, Nature.

[19]  A. Behrens,et al.  Regulation of αβ/γδ T Cell Development by the Activator Protein 1 Transcription Factor c-Jun1 , 2007, The Journal of Immunology.

[20]  B. Kyewski,et al.  Highly variable expression of tissue‐restricted self‐antigens in human thymus: Implications for self‐tolerance and autoimmunity , 2007, European journal of immunology.

[21]  M. Rewers,et al.  Extreme genetic risk for type 1A diabetes , 2006, Proceedings of the National Academy of Sciences.

[22]  C. Polychronakos,et al.  Isolation and Characterization of Proinsulin-Producing Medullary Thymic Epithelial Cell Clones , 2006, Diabetes.

[23]  A. Barton,et al.  Fine mapping of genes within the IDDM8 region in rheumatoid arthritis , 2006, Arthritis research & therapy.

[24]  G. Hicks,et al.  TLS, EWS and TAF15: a model for transcriptional integration of gene expression. , 2006, Briefings in functional genomics & proteomics.

[25]  Mark S. Anderson,et al.  The cellular mechanism of Aire control of T cell tolerance. , 2005, Immunity.

[26]  D. Hafler,et al.  Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope , 2005, Nature.

[27]  G. Eisenbarth,et al.  Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice , 2005, Nature.

[28]  C. Polychronakos,et al.  Mechanisms of genetic susceptibility to type I diabetes: beyond HLA. , 2004, Molecular genetics and metabolism.

[29]  K. Kataoka,et al.  MafA has strong cell transforming ability but is a weak transactivator , 2003, Oncogene.

[30]  C. Boitard,et al.  Acceleration of type 1 diabetes mellitus in proinsulin 2-deficient NOD mice. , 2003, The Journal of clinical investigation.

[31]  Mark S. Anderson,et al.  Projection of an Immunological Self Shadow Within the Thymus by the Aire Protein , 2002, Science.

[32]  C. Polychronakos,et al.  Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance: the mechanism by which the IDDM2 locus may predispose to diabetes. , 2002, Diabetes.

[33]  L. Klein,et al.  Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self , 2001, Nature Immunology.

[34]  C. Polychronakos,et al.  Class III alleles of the variable number of tandem repeat insulin polymorphism associated with silencing of thymic insulin predispose to type 1 diabetes. , 2001, The Journal of clinical endocrinology and metabolism.

[35]  G. Cibelli,et al.  Biological Activity of Mammalian Transcriptional Repressors , 2001, Biological chemistry.

[36]  William R. Atchley,et al.  Molecular Evolution of the GATA Family of Transcription Factors: Conservation Within the DNA-Binding Domain , 2000, Journal of Molecular Evolution.

[37]  M. Lanotte,et al.  JEM-1, a novel nuclear co-factor: localisation and functional interaction with AP-1 , 1999, Leukemia.

[38]  J. Todd,et al.  Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus , 1997, Nature Genetics.

[39]  J. Todd,et al.  Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus , 1995, Nature Genetics.

[40]  J. Perheentupa,et al.  Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. , 1990, The New England journal of medicine.

[41]  W. Rutter,et al.  The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences , 1982, Nature.

[42]  G. Felsenfeld,et al.  Vezf 1 regulates genomic DNA methylation through its effects on expression of DNA methyltransferase Dnmt 3 b , 2008 .

[43]  A. Behrens,et al.  Regulation of alphabeta/gammadelta T cell development by the activator protein 1 transcription factor c-Jun. , 2007, Journal of immunology.

[44]  C. Polychronakos,et al.  Alleles at the Insulin VNTR Polymorphism Are Associated With Regulatory T-Cell Responses to Proinsulin Epitopes in HLA-DR 4 , DQ 8 Individuals , 2005 .