Lévy-based Cox point processes

In this paper we introduce Lévy-driven Cox point processes (LCPs) as Cox point processes with driving intensity function Λ defined by a kernel smoothing of a Lévy basis (an independently scattered, infinitely divisible random measure). We also consider log Lévy-driven Cox point processes (LLCPs) with Λ equal to the exponential of such a kernel smoothing. Special cases are shot noise Cox processes, log Gaussian Cox processes, and log shot noise Cox processes. We study the theoretical properties of Lévy-based Cox processes, including moment properties described by nth-order product densities, mixing properties, specification of inhomogeneity, and spatio-temporal extensions.

[1]  Barnes Discussion of the Paper , 1961, Public health papers and reports.

[2]  N. G. Best,et al.  Spatial Poisson Regression for Health and Exposure Data Measured at Disparate Resolutions , 2000 .

[3]  Thorsten Wiegand,et al.  Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. , 2007, Ecology.

[4]  Alan F. Karr,et al.  Point Processes and Their Statistical Inference , 1991 .

[5]  R. Waagepetersen An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes , 2007, Biometrics.

[6]  A. Brix,et al.  Spatio‐temporal Modelling of Weeds by Shot‐noise G Cox processes , 2002 .

[7]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[8]  A. Baddeley,et al.  A non-parametric measure of spatial interaction in point patterns , 1996, Advances in Applied Probability.

[9]  Noel A Cressie,et al.  A space-time survival point process for a longleaf pine forest in Southern Georgia , 1994 .

[10]  O. Barndorff-Nielsen,et al.  A parsimonious and universal description of turbulent velocity increments , 2004 .

[11]  Eva B. Vedel Jensen,et al.  Levy-based growth models , 2008, 0803.0860.

[12]  M. Clyde,et al.  Lévy Adaptive Regression Kernels , 2007 .

[13]  M. Eisen,et al.  Probability and its applications , 1975 .

[14]  J. Heikkinen,et al.  Non‐parametric Bayesian Estimation of a Spatial Poisson Intensity , 1998 .

[15]  J. Symanzik Statistical Analysis of Spatial Point Patterns (2nd ed.) , 2005 .

[16]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[17]  R. Waagepetersen,et al.  Two‐step estimation for inhomogeneous spatial point processes , 2009 .

[18]  Stephen G. Walker,et al.  Representations of Lévy processes without Gaussian components , 2000 .

[19]  Eva B. Vedel Jensen,et al.  Inhomogeneous spatial point processes by location-dependent scaling , 2003, Advances in Applied Probability.

[20]  J. Møller,et al.  Shot noise Cox processes , 2003, Advances in Applied Probability.

[21]  A. Baddeley,et al.  Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns , 2000 .

[22]  O. Barndorff-Nielsen,et al.  Lévy-based spatial-temporal modelling, with applications to turbulence , 2004 .

[23]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[24]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[25]  Jesper Møller,et al.  Statistical inference for Cox processes , 2001 .

[26]  Y. Belyaev Analytic Random Processes , 1959 .

[27]  Peter Green,et al.  Highly Structured Stochastic Systems , 2003 .

[28]  Davar Khoshnevisan,et al.  Multiparameter Processes: An Introduction to Random Fields , 2002 .

[29]  Patrick J. Heagerty,et al.  Window Subsampling of Estimating Functions with Application to Regression Models , 2000 .

[30]  L. Baxter Random Fields on a Network: Modeling, Statistics, and Applications , 1996 .

[31]  Eva B. Vedel Jensen,et al.  Spatio-Temporal Modelling — with a View to Biological Growth , 2007 .

[32]  J. Davidson Stochastic Limit Theory , 1994 .

[33]  T. Ferguson,et al.  A Representation of Independent Increment Processes without Gaussian Components , 1972 .

[34]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[35]  Anders Brix,et al.  Space-time multi type log Gaussian Cox processes with a view modeling weed data , 1998 .

[36]  B. Rajput,et al.  Spectral representations of infinitely divisible processes , 1989 .

[37]  Martin Crowder,et al.  On Consistency and Inconsistency of Estimating Equations , 1986, Econometric Theory.

[38]  P. Diggle,et al.  Spatiotemporal prediction for log‐Gaussian Cox processes , 2001 .

[39]  Yongtao Guan,et al.  A Composite Likelihood Approach in Fitting Spatial Point Process Models , 2006 .

[40]  R. Condit,et al.  Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador , 2004 .

[41]  Robert L. Wolpert,et al.  Simulation of Lévy Random Fields , 1998 .

[42]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[43]  Jürgen Symanzik,et al.  Statistical Analysis of Spatial Point Patterns , 2005, Technometrics.

[44]  F. Schoenberg Consistent Parametric Estimation of the Intensity of a Spatial-temporal Point Process , 2005 .

[45]  P. Guttorp,et al.  Studies in the history of probability and statistics XLIX On the Matérn correlation family , 2006 .

[46]  J. Neyman,et al.  Statistical Approach to Problems of Cosmology , 1958 .

[47]  T. O’Neil Geometric Measure Theory , 2002 .

[48]  R. Wolpert,et al.  Poisson/gamma random field models for spatial statistics , 1998 .

[49]  R. Waagepetersen,et al.  Modern Statistics for Spatial Point Processes * , 2007 .

[50]  O. Barndorff-Nielsen,et al.  Lévy-based Tempo-Spatial Modelling; with Applications to Turbulence , 2003 .

[52]  Peter J. Diggle,et al.  Point process methodology for on‐line spatio‐temporal disease surveillance , 2005 .

[53]  Anders Brix,et al.  Space‐time Multi Type Log Gaussian Cox Processes with a View to Modelling Weeds , 2001 .

[54]  B. Jones,et al.  A lognormal model for the cosmological mass distribution. , 1991 .

[55]  M. Thomas A generalization of Poisson's binomial limit for use in ecology. , 1949, Biometrika.

[56]  Jesper Møller,et al.  Generalised shot noise Cox processes , 2005, Advances in Applied Probability.

[57]  P. Doukhan Mixing: Properties and Examples , 1994 .

[58]  A. Brix Generalized Gamma measures and shot-noise Cox processes , 1999, Advances in Applied Probability.