Into the UV: A Precise Transmission Spectrum of HAT-P-41b Using Hubble’s WFC3/UVIS G280 Grism

The ultraviolet-visible wavelength range holds critical spectral diagnostics for the chemistry and physics at work in planetary atmospheres. To date, exoplanet time-series atmospheric characterization studies have relied on several combinations of modes on Hubble's STIS/COS instruments to access this wavelength regime. Here for the first time, we apply the Hubble WFC3/UVIS G280 grism mode to obtain exoplanet spectroscopy from 200-800 nm in a single observation. We test the G280 grism mode on the hot Jupiter HAT-P-41b over two consecutive transits to determine its viability for exoplanet atmospheric characterization. We obtain a broadband transit depth precision of 29-33ppm and a precision of on average 200ppm in 10nm spectroscopic bins. Spectral information from the G280 grism can be extracted from both the positive and negative first order spectra, resulting in a 60% increase in the measurable flux. Additionally, the first HST orbit can be fully utilized in the time-series analysis. We present detailed extraction and reduction methods for use by future investigations with this mode, testing multiple techniques. We find the results fully consistent with STIS measurements of HAT-P-41b from 310-800 nm, with the G280 results representing a more observationally efficient and precise spectrum. We fit HAT-P-41b's transmission spectrum with a forward model at Teq=2091K, high metallicity, and significant scattering and cloud opacity. With these first of their kind observations, we demonstrate that WFC3/UVIS G280 is a powerful new tool to obtain UV-optical spectra of exoplanet atmospheres, adding to the UV legacy of Hubble and complementing future observations with the James Webb Space Telescope.

[1]  J. Manners,et al.  Erratum: A library ofATMOforward model transmission spectra for hot Jupiter exoplanets , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  Nikole K. Lewis,et al.  A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c , 2016, Nature.

[3]  Thomas J. Loredo,et al.  TRANSIT AND ECLIPSE ANALYSES OF THE EXOPLANET HD 149026b USING BLISS MAPPING , 2011, 1108.2057.

[4]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[5]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[6]  N. Crouzet,et al.  WATER VAPOR IN THE SPECTRUM OF THE EXTRASOLAR PLANET HD 189733b. I. THE TRANSIT , 2014, 1407.2462.

[7]  P. McCullough,et al.  Considerations for using Spatial Scans with WFC3 , 2012 .

[8]  M. Marley,et al.  High-temperature condensate clouds in super-hot Jupiter atmospheres , 2016, 1610.03325.

[9]  Jacob L. Bean,et al.  Global Climate and Atmospheric Composition of the Ultra-hot Jupiter WASP-103b from HST and Spitzer Phase Curve Observations , 2018, The Astronomical Journal.

[10]  Nikole K. Lewis,et al.  The Hubble Space Telescope PanCET Program: Exospheric Mg ii and Fe ii in the Near-ultraviolet Transmission Spectrum of WASP-121b Using Jitter Decorrelation , 2019, The Astronomical Journal.

[11]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[12]  Emilio Molinari,et al.  Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b , 2018, Nature.

[13]  P. Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[14]  T. Evans,et al.  An Optical Transmission Spectrum for the Ultra-hot Jupiter WASP-121b Measured with the Hubble Space Telescope , 2018, The Astronomical Journal.

[15]  Andrea Chiavassa,et al.  The Stagger-grid: A grid of 3D stellar atmosphere models - IV. Limb darkening coefficients , 2014, 1403.3487.

[16]  T. Naylor,et al.  Exploring the M-dwarf Luminosity–Temperature–Radius relationships using Gaia DR2 , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[18]  S. Aigrain,et al.  Hubble Space Telescope hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT-P-1b , 2013, 1310.0083.

[19]  Cajo J. F. ter Braak,et al.  Differential Evolution Markov Chain with snooker updater and fewer chains , 2008, Stat. Comput..

[20]  Dominic J. Benford,et al.  Explanatory Supplement to the WISE All-Sky Data Release Products , 2012, WISE 2012.

[21]  G. H'ebrard,et al.  The GAPS Programme with HARPS-N at TNG - XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets , 2017, 1704.00373.

[22]  L.A.Buchhave,et al.  Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b , 2018, 1812.05119.

[23]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[24]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[25]  S. Aigrain,et al.  Hst hot jupiter transmission spectral survey: Detection of water in HAT-P-1b from WFC3 near-IR spatial scan observations , 2013, 1308.2106.

[26]  N. Santos,et al.  Near-infrared transmission spectrum of the warm-uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope , 2014, 1405.1056.

[27]  A. Mandell,et al.  MARGINALIZING INSTRUMENT SYSTEMATICS IN HST WFC3 TRANSIT LIGHT CURVES , 2016, 1601.02587.

[28]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[29]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[30]  Hannah R. Wakeford,et al.  Transmission spectral properties of clouds for hot Jupiter exoplanets , 2014, 1409.7594.

[31]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[32]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[33]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[34]  Nikolay Nikolov,et al.  A library of ATMO forward model transmission spectra for hot Jupiter exoplanets , 2017, 1710.10269.

[35]  B. J. Fulton,et al.  HAT-P-39b–HAT-P-41b: THREE HIGHLY INFLATED TRANSITING HOT JUPITERS , 2012, 1207.3344.

[36]  N. Lewis,et al.  Exoplanet Atmosphere Forecast: Observers Should Expect Spectroscopic Transmission Features to be Muted to 33% , 2019, Research Notes of the AAS.

[37]  J. Harder,et al.  Comparative Climatology of Terrestrial Planets , 2014 .

[38]  T. Barman,et al.  An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b , 2018, 1801.00412.

[39]  Susana Elizabeth Deustua,et al.  WFC3 UVIS Full Well Depths, and Linearity Near and Beyond Saturation , 2010 .

[40]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering , 2014, 1410.7611.

[41]  Sylvia M. Baggett,et al.  First Results from Contamination Monitoring with the WFC3 UVIS G280 Grism , 2011 .

[42]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[43]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[44]  W. B. Landsman,et al.  The IDL Astronomy User's Library , 1992 .

[45]  Heidelberg,et al.  WASP-8b: CHARACTERIZATION OF A COOL AND ECCENTRIC EXOPLANET WITH SPITZER , 2013, 1303.5468.

[46]  C. Helling,et al.  Exoplanet Clouds , 2018, Annual Review of Earth and Planetary Sciences.

[47]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .