T-Cal: Understanding Team Conversational Data with Calendar-based Visualization

Understanding team communication and collaboration patterns is critical for improving work efficiency in organizations. This paper presents an interactive visualization system, T-Cal, that supports the analysis of conversation data from modern team messaging platforms (e.g., Slack). T-Cal employs a user-familiar visual interface, a calendar, to enable seamless multi-scale browsing of data from different perspectives. T-Cal also incorporates a number of analytical techniques for disentangling interleaving conversations, extracting keywords, and estimating sentiment. The design of T-Cal is based on an iterative user-centered design process including interview studies, requirements gathering, initial prototypes demonstration, and evaluation with domain users. The resulting two case studies indicate the effectiveness and usefulness of T-Cal in real-world applications, including daily conversations within an industry research lab and student group chats in a MOOC.

[1]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[2]  H. Artman,et al.  Team communication and coordination as distributed cognition , 1998 .

[3]  Merrill Warkentin,et al.  Training to improve virtual team communication , 1999, Inf. Syst. J..

[4]  J. V. van Wijk,et al.  Cluster and calendar based visualization of time series data , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[5]  Warren Sack,et al.  Discourse diagrams: interface design for very large-scale conversations , 2000, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[6]  Paula S. Newman,et al.  Exploring discussion lists: steps and directions , 2002, JCDL '02.

[7]  Lucy T. Nowell,et al.  ThemeRiver: Visualizing Thematic Changes in Large Document Collections , 2002, IEEE Trans. Vis. Comput. Graph..

[8]  Fernanda B. Viégas,et al.  The chat circles series: explorations in designing abstract graphical communication interfaces , 2002, DIS '02.

[9]  Carman Neustaedter,et al.  Understanding sequence and reply relationships within email conversations: a mixed-model visualization , 2003, CHI '03.

[10]  Martin Wattenberg,et al.  Conversation thumbnails for large-scale discussions , 2003, CHI Extended Abstracts.

[11]  Jack W. Hoffbuhr Work Happens , 2003 .

[12]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[13]  Bernard Kerr Thread Arcs: an email thread visualization , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[14]  Martin Wattenberg,et al.  Flash forums and forumReader: navigating a new kind of large-scale online discussion , 2004, CSCW.

[15]  Fernanda B. Viégas,et al.  Visualizing email content: portraying relationships from conversational histories , 2006, CHI.

[16]  Ben Shneiderman,et al.  Using rhythms of relationships to understand e-mail archives , 2006, J. Assoc. Inf. Sci. Technol..

[17]  Ben Shneiderman,et al.  Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies , 2006, BELIV '06.

[18]  Hongan Wang,et al.  Visualization of large hierarchical data by circle packing , 2006, CHI.

[19]  Jeremy P. Birnholtz,et al.  Visualizing real-time language-based feedback on teamwork behavior in computer-mediated groups , 2009, CHI.

[20]  Karrie Karahalios,et al.  Conversation clusters: grouping conversation topics through human-computer dialog , 2009, CHI.

[21]  Douglas W. Oard,et al.  Context-based Message Expansion for Disentanglement of Interleaved Text Conversations , 2009, NAACL.

[22]  Ewan Klein,et al.  Natural Language Processing with Python , 2009 .

[23]  Tamara Munzner,et al.  A Nested Model for Visualization Design and Validation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[24]  Andreas Kaltenbrunner,et al.  Exploring Asynchronous Online Discussions through Hierarchical Visualisation , 2009, 2009 13th International Conference Information Visualisation.

[25]  Micha Elsner,et al.  Disentangling Chat , 2010, CL.

[26]  Coye Cheshire,et al.  Not Too Long to Read: The tldr Interface for Exploring and Navigating Large-Scale Discussion Spaces , 2010, 2010 43rd Hawaii International Conference on System Sciences.

[27]  Nick Cramer,et al.  Automatic Keyword Extraction from Individual Documents , 2010 .

[28]  Qiang Zhang,et al.  TIARA: a visual exploratory text analytic system , 2010, KDD '10.

[29]  Xin Tong,et al.  TextFlow: Towards Better Understanding of Evolving Topics in Text , 2011, IEEE Transactions on Visualization and Computer Graphics.

[30]  Ulrik Brandes,et al.  Asymmetric Relations in Longitudinal Social Networks , 2011, IEEE Transactions on Visualization and Computer Graphics.

[31]  William Ribarsky,et al.  ParallelTopics: A probabilistic approach to exploring document collections , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[32]  Daniel A. Keim,et al.  ForAVis: explorative user forum analysis , 2011, WIMS '11.

[33]  Nikos Loutas,et al.  ArgVis: Structuring Political Deliberations Using Innovative Visualisation Technologies , 2011, ePart.

[34]  John G. Keating,et al.  A visualisation tool to aid exploration of students' interactions in asynchronous online communication , 2012, Comput. Educ..

[35]  Tobias Isenberg,et al.  Weighted graph comparison techniques for brain connectivity analysis , 2013, CHI.

[36]  William Ribarsky,et al.  HierarchicalTopics: Visually Exploring Large Text Collections Using Topic Hierarchies , 2013, IEEE Transactions on Visualization and Computer Graphics.

[37]  Yingcai Wu,et al.  Visual Analysis of Topic Competition on Social Media , 2013, IEEE Transactions on Visualization and Computer Graphics.

[38]  Yale Song,et al.  #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[39]  Yingcai Wu,et al.  EvoRiver: Visual Analysis of Topic Coopetition on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[40]  Fangzhao Wu,et al.  OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[41]  Lise Getoor,et al.  Understanding MOOC Discussion Forums using Seeded LDA , 2014, BEA@ACL.

[42]  Giuseppe Carenini,et al.  ConVis: A Visual Text Analytic System for Exploring Blog Conversations , 2014, Comput. Graph. Forum.

[43]  Weiwei Cui,et al.  How Hierarchical Topics Evolve in Large Text Corpora , 2014, IEEE Transactions on Visualization and Computer Graphics.

[44]  Fei Wang,et al.  SocialHelix: visual analysis of sentiment divergence in social media , 2015, J. Vis..

[45]  Wael Khreich,et al.  A Survey of Techniques for Event Detection in Twitter , 2015, Comput. Intell..

[46]  Giuseppe Carenini,et al.  MultiConVis: A Visual Text Analytics System for Exploring a Collection of Online Conversations , 2016, IUI.

[47]  Sung-Hee Kim,et al.  VisOHC: Designing Visual Analytics for Online Health Communities , 2016, IEEE Transactions on Visualization and Computer Graphics.

[48]  Daniel A. Keim,et al.  ConToVi: Multi‐Party Conversation Exploration using Topic‐Space Views , 2016, Comput. Graph. Forum.

[49]  Jian Pei,et al.  Online Visual Analytics of Text Streams , 2015, IEEE Transactions on Visualization and Computer Graphics.

[50]  J. Slack Animal regeneration: ancestral character or evolutionary novelty? , 2017, EMBO reports.

[51]  Daniel A. Keim,et al.  NEREx: Named‐Entity Relationship Exploration in Multi‐Party Conversations , 2017, Comput. Graph. Forum.

[52]  Jian Zhao,et al.  Visual Analysis of MOOC Forums with iForum , 2017, IEEE Transactions on Visualization and Computer Graphics.