Satisfiability Modulo Theories and Assignments
暂无分享,去创建一个
Maria Paola Bonacina | Natarajan Shankar | Stéphane Lengrand | N. Shankar | Stéphane Lengrand | M. P. Bonacina
[1] Daniel S. Weld,et al. The LPSAT Engine & Its Application to Resource Planning , 1999, IJCAI.
[2] Kenneth L. McMillan,et al. Generalizing DPLL to Richer Logics , 2009, CAV.
[3] Leonardo Mendonça de Moura,et al. Cutting to the Chase , 2011, Journal of Automated Reasoning.
[4] Philipp Rümmer,et al. Deciding Bit-Vector Formulas with mcSAT , 2016, SAT.
[5] Leonardo Mendonça de Moura,et al. A Model-Constructing Satisfiability Calculus , 2013, VMCAI.
[6] Cesare Tinelli,et al. Splitting on Demand in SAT Modulo Theories , 2006, LPAR.
[7] Amit Goel,et al. Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL , 2007, FroCoS.
[8] Scott Cotton. Natural Domain SMT: A Preliminary Assessment , 2010, FORMATS.
[9] Maria Paola Bonacina,et al. On Conflict-Driven Reasoning , 2018, AFM@NFM.
[10] Clark W. Barrett,et al. The design and implementation of the model constructing satisfiability calculus , 2013, 2013 Formal Methods in Computer-Aided Design.
[11] Leonardo Mendonça de Moura,et al. Solving non-linear arithmetic , 2012, ACCA.
[12] Maria Paola Bonacina,et al. A model-constructing framework for theory combination , 2016 .
[13] P. Smokowski,et al. Conflict Resolution , 1989, International Conference on Principles and Practice of Constraint Programming.
[14] Dejan Jovanovic,et al. Solving Nonlinear Integer Arithmetic with MCSAT , 2017, VMCAI.
[15] Chao Wang,et al. Deciding Separation Logic Formulae by SAT and Incremental Negative Cycle Elimination , 2005, LPAR.
[16] Daniel Kroening,et al. Deciding floating-point logic with systematic abstraction , 2012, 2012 Formal Methods in Computer-Aided Design (FMCAD).
[17] Greg Nelson,et al. Simplification by Cooperating Decision Procedures , 1979, TOPL.
[18] Inês Lynce,et al. Conflict-Driven Clause Learning SAT Solvers , 2009, Handbook of Satisfiability.