Homological Description of the Quantum Adiabatic Evolution With a View Toward Quantum Computations
暂无分享,去创建一个
[1] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[2] V. Fock,et al. Beweis des Adiabatensatzes , 1928 .
[3] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[4] R. Vandervorst,et al. Morse–Conley–Floer homology , 2013, 1305.4074.
[5] C. Conley. Isolated Invariant Sets and the Morse Index , 1978 .
[6] J. E. Avron,et al. Adiabatic Theorem without a Gap Condition , 1999 .
[7] 松本 幸夫. An introduction to Morse theory , 2002 .
[8] Hidetoshi Nishimori,et al. Exponential Enhancement of the Efficiency of Quantum Annealing by Non-Stoquastic Hamiltonians , 2016, Frontiers ICT.
[9] P. Shor,et al. Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.
[10] A. Banyaga,et al. Lectures on Morse Homology , 2005 .
[11] Andrew M. Childs,et al. Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.
[12] N. Cerf,et al. Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.
[13] B. Chakrabarti,et al. Quantum Ising Phases and Transitions in Transverse Ising Models , 1996 .
[14] Daniel A Lidar,et al. Simple proof of equivalence between adiabatic quantum computation and the circuit model. , 2007, Physical review letters.
[15] Isaac L. Chuang,et al. Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .
[16] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[17] David P. DiVincenzo,et al. The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..
[18] S. Tayur,et al. Enhancing the efficiency of adiabatic quantum computations , 2019, 1903.01486.
[19] Mikhail N. Vyalyi,et al. Classical and Quantum Computation , 2002, Graduate studies in mathematics.
[20] T. Banchoff,et al. Differential Geometry of Curves and Surfaces , 2010 .
[21] Tosio Kato. On the Adiabatic Theorem of Quantum Mechanics , 1950 .
[22] Seth Lloyd,et al. Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[23] Umesh V. Vazirani,et al. How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[24] G. Hagedorn. Adiabatic expansions near eigenvalue crossings , 1989 .
[25] D. Arrowsmith,et al. GEOMETRICAL METHODS IN THE THEORY OF ORDINARY DIFFERENTIAL EQUATIONS (Grundlehren der mathematischen Wissenschaften, 250) , 1984 .
[26] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[27] J. Neumann,et al. Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen , 1929 .
[28] E. Witten. Supersymmetry and Morse theory , 1982 .
[29] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..