Hook formulas for skew shapes I. q-analogues and bijections
暂无分享,去创建一个
[1] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[2] Emden R. Gansner,et al. The Hillman-Grassl Correspondence and the Enumeration of Reverse Plane Partitions , 1981, J. Comb. Theory, Ser. A.
[3] Ezra Miller,et al. Gröbner geometry of vertex decompositions and of flagged tableaux , 2005, math/0502144.
[4] Christian Krattenthaler,et al. Bijective proofs of the hook formulas for the number of standard Young tableaux, ordinary and shifted , 1995, Electron. J. Comb..
[5] I. Goulden,et al. Combinatorial Enumeration , 2004 .
[6] Bruce E. Sagan,et al. A Littlewood-Richardson rule for factorial Schur functions , 1997 .
[7] Alain Lascoux,et al. Ribbon Schur Functions , 1988, Eur. J. Comb..
[8] Pavel Galashin. A Littlewood-Richardson rule for dual stable Grothendieck polynomials , 2017, J. Comb. Theory, Ser. A.
[9] Richard P. Stanley,et al. A Formula for the Specialization of Skew Schur Functions , 2016 .
[10] William Graham,et al. Excited Young diagrams, equivariant K -theory, and Schubert varieties , 2013, 1302.3009.
[11] Mark Huber,et al. Fast perfect sampling from linear extensions , 2006, Discret. Math..
[12] J. Remmel. Bijective proofs of formulae for the number of standard Yound tableaux , 1982 .
[13] Jason Bandlow,et al. An Elementary Proof of the Hook Formula , 2008, Electron. J. Comb..
[14] Anatoly M. Vershik. Hook formula and related identities , 1992 .
[15] Igor Pak,et al. A direct bijective proof of the hook-length formula , 1997, Discret. Math. Theor. Comput. Sci..
[16] V. Kreiman. Schubert Classes in the Equivariant K-Theory and Equivariant Cohomology of the Grassmannian , 2005 .
[17] Terence Tao,et al. Puzzles and (equivariant) cohomology of Grassmannians , 2001, math/0112150.
[18] John R. Stembridge,et al. On the Fully Commutative Elements of Coxeter Groups , 1996 .
[19] B Kostant,et al. The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[20] Hariharan Narayanan. On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients , 2006 .
[21] Hiroshi Naruse,et al. K-theoretic analogues of factorial Schur P- and Q-functions , 2011, 1112.5223.
[22] G. Viennot,et al. Une forme geometrique de la correspondance de Robinson-Schensted , 1977 .
[23] Greta Panova,et al. Asymptotics of the number of standard Young tableaux of skew shape , 2016, Eur. J. Comb..
[24] Allen Knutson. A Schubert calculus recurrence from the noncomplex W-action on G/B , 2003 .
[25] Ilse Fischer. A bijective proof of the hook-length formula for shifted standard tableaux , 2001 .
[26] J. S. Frame,et al. The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.
[27] Tewodros Amdeberhan,et al. Multi-cores, posets, and lattice paths , 2014, Adv. Appl. Math..
[28] Arthur L. B. Yang,et al. Transformations of Border Strips and Schur Function Determinants , 2004 .
[29] Richard P. Stanley,et al. On the enumeration of skew Young tableaux , 2001, Adv. Appl. Math..
[30] Bruce E. Sagan,et al. Enumeration of Partitions with Hooklengths , 1982, Eur. J. Comb..
[31] C. Krattenthaler,et al. Plane partitions in the work of Richard Stanley and his school , 2015, 1503.05934.
[32] R. Stanley. Theory and Application of Plane Partitions. Part 2 , 1971 .
[33] S. Billey,et al. Kostant polynomials and the cohomology ring for G/B. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[34] Greta Panova,et al. Hook Formulas for Skew Shapes II. Combinatorial Proofs and Enumerative Applications , 2016, SIAM J. Discret. Math..
[35] Julianna S. Tymoczko,et al. Billey's formula in combinatorics, geometry, and topology , 2013, 1309.0254.
[36] Christian Krattenthaler. An Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1998, Discret. Math. Theor. Comput. Sci..
[37] Yuval Roichman,et al. Standard Young Tableaux , 2015 .
[38] V. Kreiman. Schubert Classes in the Equivariant K-Theory and Equivariant Cohomology of the Lagrangian Grassmannian , 2006 .
[39] Gérard Viennot,et al. Enumeration of certain young tableaux with bounded height , 1986 .
[40] Hiroshi Naruse,et al. Excited Young diagrams and equivariant Schubert calculus , 2007 .
[41] Alexei Borodin,et al. q-Distributions on boxed plane partitions , 2009, 0905.0679.
[42] Ian P. Goulden,et al. Planar decompositions of tableaux and Schur function determinants , 1995, Eur. J. Comb..
[43] H. Wilf,et al. A probabilistic proof of a formula for the number of Young tableaux of a given shape , 1979 .
[44] Robert A. Sulanke,et al. The Narayana distribution , 2002 .
[45] Emden R. Gansner,et al. MATRIX CORRESPONDENCES OF PLANE PARTITIONS , 1981 .
[46] Michelle L. Wachs,et al. Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators , 1985, J. Comb. Theory, Ser. A.
[47] B. Kostant,et al. The Nil Hecke Ring and Cohomology of , 2003 .
[48] Grigori Olshanski,et al. Shifted Schur Functions , 1996 .
[49] yuliy baryshnikov,et al. Enumeration formulas for young tableaux in a diagonal strip , 2007, 0709.0498.
[50] Christian Krattenthaler. Another Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1999, J. Comb. Theory, Ser. A.
[51] Jakob Jonsson,et al. Generalized triangulations and diagonal-free subsets of stack polyominoes , 2005, J. Comb. Theory, Ser. A.
[52] H. H. Andersen,et al. Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p : independence of p , 1994 .
[53] Bruce E. Sagan. PROBABILISTIC PROOFS OF HOOK LENGTH FORMULAS INVOLVING TREES , 2008 .
[54] Greta Panova,et al. Hook formulas for skew shapes III. Multivariate and product formulas , 2017, Algebraic Combinatorics.
[55] Igor Pak,et al. The weighted hook length formula , 2010, J. Comb. Theory, Ser. A.
[56] Matjaz Konvalinka,et al. A bijective proof of the hook-length formula for skew shapes , 2017, Electron. Notes Discret. Math..
[57] T. Inui,et al. The Symmetric Group , 1990 .
[58] Richard P. Stanley,et al. The Conjugate Trace and Trace of a Plane Partition , 1973, J. Comb. Theory, Ser. A.
[59] A. P. Hillman,et al. Reverse Plane Partitions and Tableau Hook Numbers , 1976, J. Comb. Theory A.
[60] Greta Panova,et al. Hook formulas for skew shapes , 2015 .
[61] Igor Pak,et al. Hook length formula and geometric combinatorics. , 2001 .
[62] Alexander Yong,et al. Equivariant Schubert calculus and jeu de taquin , 2012 .