Polynomiality of primal-dual affine scaling algorithms for nonlinear complementarity problems

This paper provides an analysis of the polynomiality of primal-dual interior point algorithms for nonlinear complementarity problems using a wide neighborhood. A condition for the smoothness of the mapping is used, which is related to Zhu’s scaled Lipschitz condition, but is also applicable to mappings that are not monotone. We show that a family of primal-dual affine scaling algorithms generates an approximate solution (given a precision ε) of the nonlinear complementarity problem in a finite number of iterations whose order is a polynomial ofn, ln(1/ε) and a condition number. If the mapping is linear then the results in this paper coincide with the ones in Jansen et al., SIAM Journal on Optimization 7 (1997) 126–140.

[1]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[2]  Shinji Mizuno,et al.  An O(n3L) adaptive path following algorithm for a linear complementarity problem , 1991, Math. Program..

[3]  F. Jarre On the method of analytic centers for solving smooth convex programs , 1988 .

[4]  Florian Jarre,et al.  A sufficient condition for self-concordance, with application to some classes of structured convex programming problems , 1995, Math. Program..

[5]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[6]  Clóvis C. Gonzaga,et al.  Path-Following Methods for Linear Programming , 1992, SIAM Rev..

[7]  F. Jarre Interior-point methods via self-concordance or relative lipschitz condition , 1995 .

[8]  Kenneth O. Kortanek,et al.  A Polynomial Barrier Algorithm for Linearly Constrained Convex Programming Problems , 1993, Math. Oper. Res..

[9]  S. Mizuno O(nρL)-iteration and O(n3L)-operation potential reduction algorithms for linear programming , 1991 .

[10]  Dick den Hertog,et al.  Interior Point Approach to Linear, Quadratic and Convex Programming: Algorithms and Complexity , 1994 .

[11]  Shinji Mizuno,et al.  Limiting Behavior of Trajectories Generated by a Continuation Method for Monotone Complementarity Problems , 1990, Math. Oper. Res..

[12]  Tao Wang,et al.  A Positive Algorithm for the Nonlinear Complementarity Problem , 1995, SIAM J. Optim..

[13]  Jishan Zhu,et al.  A path following algorithm for a class of convex programming problems , 1992, ZOR Methods Model. Oper. Res..

[14]  Shinji Mizuno,et al.  A new continuation method for complementarity problems with uniformP-functions , 1989, Math. Program..

[15]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[16]  C. Roos,et al.  On the classical logarithmic barrier function method for a class of smooth convex programming problems , 1992 .

[17]  P. Tseng Global linear convergence of a path-following algorithm for some monotone variational inequality problems , 1992 .

[18]  Jie Sun,et al.  A Predictor-Corrector Algorithm for a Class of Nonlinear Saddle Point Problems , 1997 .

[19]  Y. Ye,et al.  On some efficient interior point methods for nonlinear convex programming , 1991 .

[20]  Nimrod Megiddo,et al.  An interior point potential reduction algorithm for the linear complementarity problem , 1992, Math. Program..

[21]  Shinji Mizuno,et al.  Large-Step Interior Point Algorithms for Linear Complementarity Problems , 1993, SIAM J. Optim..

[22]  Osman Güler,et al.  Generalized Linear Complementarity Problems , 1995, Math. Oper. Res..

[23]  Osman Güler,et al.  Existence of Interior Points and Interior Paths in Nonlinear Monotone Complementarity Problems , 1993, Math. Oper. Res..

[24]  M. Seetharama Gowda,et al.  Generalized linear complementarity problems , 1990, Math. Program..

[25]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[26]  Stephen J. Wright A path-following infeasible-interior-point algorithm for linear complementarity problems , 1993 .

[27]  Masakazu Kojima,et al.  Global convergence in infeasible-interior-point algorithms , 1994, Math. Program..

[28]  Tamás Terlaky,et al.  A Family of Polynomial Affine Scaling Algorithms for Positive SemiDefinite Linear Complementarity Problems , 1997, SIAM J. Optim..

[29]  Michael J. Todd,et al.  Barrier Functions and Interior-Point Algorithms for Linear Programming with Zero-, One-, or Two-Sided Bounds on the Variables , 1995, Math. Oper. Res..

[30]  Y. Ye,et al.  Interior-point methods for nonlinear complementarity problems , 1996 .

[31]  Yinyu Ye,et al.  On quadratic and $$O\left( {\sqrt {nL} } \right)$$ convergence of a predictor—corrector algorithm for LCP , 1993, Math. Program..

[32]  F. Jarre Interior-point methods for convex programming , 1992 .

[33]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[34]  H. Väliaho,et al.  P∗-matrices are just sufficient , 1996 .

[35]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[36]  Kurt M. Anstreicher,et al.  A New Infinity-Norm Path Following Algorithm for Linear Programming , 1995, SIAM J. Optim..

[37]  Shinji Mizuno,et al.  An $$O(\sqrt n L)$$ iteration potential reduction algorithm for linear complementarity problems , 1991, Math. Program..

[38]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[39]  Jong-Shi Pang,et al.  NE/SQP: A robust algorithm for the nonlinear complementarity problem , 1993, Math. Program..

[40]  Y. Ye,et al.  A Class of Linear Complementarity Problems Solvable in Polynomial Time , 1991 .

[41]  Mauricio G. C. Resende,et al.  A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension , 1990, Math. Oper. Res..

[42]  Tamás Terlaky,et al.  A Polynomial Primal-Dual Dikin-Type Algorithm for Linear Programming , 1996, Math. Oper. Res..

[43]  L. McLinden An analogue of Moreau's proximation theorem, with application to the nonlinear complementarity problem. , 1980 .

[44]  Renato D. C. Monteiro,et al.  An Extension of Karmarkar Type Algorithm to a Class of Convex Separable Programming Problems with Global Linear Rate of Convergence , 1990, Math. Oper. Res..

[45]  Shinji Mizuno,et al.  Theoretical convergence of large-step primal—dual interior point algorithms for linear programming , 1993, Math. Program..

[46]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..