Turing: A Language for Flexible Probabilistic Inference

HG and ZG acknowledge support from the Alan Turing Institute (EPSRC Grant EP/N510129/1) and EPSRC Grant EP/N014162/1, and donations from Google and Microsoft Research.

[1]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[2]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[3]  Avi Pfeffer,et al.  IBAL: A Probabilistic Rational Programming Language , 2001, IJCAI.

[4]  Charles M. Bishop,et al.  Variational Message Passing , 2005, J. Mach. Learn. Res..

[5]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.

[6]  A. Pfeffer,et al.  Figaro : An Object-Oriented Probabilistic Programming Language , 2009 .

[7]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[8]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[9]  Christopher M. Bishop,et al.  Model-based machine learning , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Lawrence M. Murray Bayesian State-Space Modelling on High-Performance Hardware Using LibBi , 2013, 1306.3277.

[11]  Frank D. Wood,et al.  A Compilation Target for Probabilistic Programming Languages , 2014, ICML.

[12]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.

[13]  Yura N. Perov,et al.  Venture: a higher-order probabilistic programming platform with programmable inference , 2014, ArXiv.

[14]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[15]  Zoubin Ghahramani,et al.  Probabilistic machine learning and artificial intelligence , 2015, Nature.

[16]  A. Gelman,et al.  Stan , 2015 .

[17]  Paul I. Barton,et al.  A vector forward mode of automatic differentiation for generalized derivative evaluation , 2015, Optim. Methods Softw..

[18]  Fredrik Lindsten,et al.  Interacting Particle Markov Chain Monte Carlo , 2016, ICML.

[19]  Chung-chieh Shan,et al.  Composing Inference Algorithms as Program Transformations , 2016, UAI.

[20]  David Broman,et al.  Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic Programs , 2017, AISTATS.