An Agglomerate Multilevel Preconditioner for Linear Isostasy Saddle Point Problems

This paper discusses preconditioners for the iterative solution of nonsymmetric indefinite linear algebraic systems of equations as arising in modeling of the purely elastic part of glacial rebound processes. The iteration scheme is of inner-outer type using a multilevel preconditioner for the inner solver. Numerical experiments are provided showing a robust behavior.

[1]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[2]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[3]  O. Axelsson Solving the Stokes problem on a massively parallel computer , 1999 .

[4]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[5]  Owe Axelsson,et al.  Preconditioning methods for linear systems arising in constrained optimization problems , 2003, Numer. Linear Algebra Appl..

[6]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[7]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[8]  M. Neytcheva,et al.  Numerical simulations of glacial rebound using preconditioned iterative solution methods , 2005 .

[9]  Jim E. Jones,et al.  AMGE Based on Element Agglomeration , 2001, SIAM J. Sci. Comput..

[10]  Johannes K. Kraus,et al.  Algebraic multilevel preconditioning of finite element matrices using local Schur complements , 2006, Numer. Linear Algebra Appl..

[11]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[12]  Klaus Neymeyr,et al.  A note on Inverse Iteration , 2005, Numer. Linear Algebra Appl..

[13]  E. F. F. Botta,et al.  Matrix Renumbering ILU: An Effective Algebraic Multilevel ILU Preconditioner for Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[14]  Yvan Notay,et al.  Using approximate inverses in algebraic multilevel methods , 1998, Numerische Mathematik.