Smooth Symmetric and Lorenz Models for unimodal Maps
暂无分享,去创建一个
[1] D. Chillingworth. DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .
[2] Michał Misiurewicz. Jumps of entropy in one dimension , 1989 .
[3] Ming-Chia Li,et al. A refinement of Sharkovskii's theorem on orbit types characterized by two parameters , 2003, 0709.1184.
[4] J. Llibre,et al. Kneading theory of Lorenz maps , 1989 .
[5] Guanrong Chen,et al. Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Part I: Controlled hysteresis , 1998 .
[6] M. Malkin,et al. Computing aspects of the entropic theory of one-dimensional dynamical systems , 1991 .
[7] Periods and entropy for Lorenz-like maps , 1989 .
[8] A. N. Sharkovskiĭ. COEXISTENCE OF CYCLES OF A CONTINUOUS MAP OF THE LINE INTO ITSELF , 1995 .
[9] S. Strien,et al. A structure theorem in one dimensional dynamics , 1989 .
[10] O. Kozlovski. Getting rid of the negative Schwarzian derivative condition , 2000, math/0011266.
[11] Y. Sinai,et al. Feigenbaum universality and the thermodynamic formalism , 1984 .
[12] M. Misiurewicz,et al. Entropy of twist interval maps , 1997 .
[13] The Periodic Orbits and Entropy of Certain Maps of the Unit Interval , 1980 .
[14] A. Blokh. On rotation intervals for interval maps , 1994 .
[15] On an extension of Sarkovskii's order☆ , 1989 .
[16] C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .
[17] Symmetric S-unimodal mappings and positive Liapunov exponents , 1985, Ergodic Theory and Dynamical Systems.
[18] F. Hofbauer. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II , 1979 .
[19] 鈴木 雅之,et al. On Iterated Maps of the Interval , 1981 .