Notes on Umemura polynomials

— We give a survey on special polynomials associated with algebraic solutions of the sixth Painlevé equation, and formulate a conjecture regarding a combinatorial formula for Umemura polynomials associated with a class of algebraic solutions of PVI with two discrete parameters. RÉSUMÉ. — Nous donnons un survol des polynômes spéciaux associés aux solutions algébriques de la sixième équation de Painlevé, et formulons une conjecture concernant une formule combinatoire pour les polynômes d’Umemura associés à une classe de solutions algébriques de PVI avec deux paramètres discrets.

[1]  G. Filipuk On the middle convolution and birational symmetries of the sixth Painleve equation , 2006 .

[2]  Y. Haraoka,et al.  Middle convolution and deformation for Fuchsian systems , 2007 .

[3]  H. Umemura Special polynomials associated with the Painlevé equations I , 2021 .

[4]  H. Umemura On the Irreducibility of the First Differential Equation of Painlevé , 1988 .

[5]  A new Lax pair for the sixth Painlev\'e equation associated with $\hat{\mathfrak{so}}(8)$ , 2002, math-ph/0203029.

[6]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[7]  M. Noumi,et al.  0 20 30 29 v 1 1 8 M ar 2 00 2 A new Lax pair for the sixth Painlevé equation associated with ŝo ( 8 ) , 2008 .

[8]  O. Lisovyy,et al.  Algebraic solutions of the sixth Painleve equation , 2008, 0809.4873.

[9]  A. Karimi,et al.  Master‟s thesis , 2011 .

[10]  A. Kirillov,et al.  Generalized Umemura polynomials , 2000, math/0010279.

[11]  Kazuo Okamoto Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .

[12]  誠 種子田 Polynomials associated with an algebraic solution of the sixth painleve equation , 2000 .

[13]  H. Umemura Second proof of the irreducibility of the first differential equation of painlevé , 1990, Nagoya Mathematical Journal.

[14]  Birational Weyl Group Action Arising from a Nilpotent Poisson Algebra , 2000, math/0012028.

[15]  野海 正俊,et al.  Painlevé equations through symmetry , 2004 .

[16]  T. Masuda On a Class of Algebraic Solutions to the Painlevé VI Equation, Its Determinant Formula and Coalescence Cascade , 2002, nlin/0202044.