A Nonuniform Fast Fourier Transform Based on Low Rank Approximation

By viewing the nonuniform discrete Fourier transform (NUDFT) as a perturbed version of a uniform discrete Fourier transform, we propose a fast and quasi-optimal algorithm for computing the NUDFT based on the fast Fourier transform (FFT). Our key observation is that an NUDFT and DFT matrix divided entry by entry is often well approximated by a low rank matrix, allowing us to express a NUDFT matrix as a sum of diagonally scaled DFT matrices. Our algorithm is simple to implement, automatically adapts to any working precision, and is competitive with state-of-the-art algorithms. In the fully uniform case, our algorithm is essentially the FFT. We also describe quasi-optimal algorithms for the inverse NUDFT and two-dimensional NUDFTs.

[1]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[2]  Anthony P. Austin Some new results on, and applications of, interpolation in numerical computation , 2016 .

[3]  Lloyd N. Trefethen,et al.  Trigonometric Interpolation and Quadrature in Perturbed Points , 2016, SIAM J. Numer. Anal..

[4]  Lloyd N. Trefethen Computing with functions in two dimensions , 2014 .

[5]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[6]  Stefan Kunis,et al.  Fast evaluation of real and complex exponential sums , 2016, 1606.03255.

[7]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[8]  Michael Frankfurter,et al.  The Nonuniform Discrete Fourier Transform And Its Applications In Signal Processing , 2016 .

[9]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[12]  Sheehan Olver,et al.  Fast polynomial transforms based on Toeplitz and Hankel matrices , 2016, Math. Comput..

[13]  Stefan Kunis,et al.  Nonequispaced fast Fourier transforms without oversampling , 2008 .

[14]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[15]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[16]  Chris Anderson,et al.  Rapid Computation of the Discrete Fourier Transform , 1996, SIAM J. Sci. Comput..

[17]  Mark Ainsworth,et al.  Wavelets, multilevel methods and elliptic PDEs , 1997 .

[18]  Gabriele Steidl,et al.  Fast Summation at Nonequispaced Knots by NFFT , 2003, SIAM J. Sci. Comput..

[19]  R. Beatson,et al.  A short course on fast multipole methods , 1997 .

[20]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[21]  Alex Townsend,et al.  Computing with Functions in Spherical and Polar Geometries I. The Sphere , 2015, SIAM J. Sci. Comput..

[22]  L. Greengard,et al.  Short Note: The type 3 nonuniform FFT and its applications , 2005 .

[23]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[24]  Antony Ware,et al.  Fast Approximate Fourier Transforms for Irregularly Spaced Data , 1998, SIAM Rev..

[25]  John P. Boyd,et al.  A fast algorithm for Chebyshev, Fourier, and sinc interpolation onto an irregular grid , 1992 .

[26]  L. Greengard,et al.  The type 3 nonuniform FFT and its applications June - , 2005 .