A Nonuniform Fast Fourier Transform Based on Low Rank Approximation
暂无分享,去创建一个
[1] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[2] Anthony P. Austin. Some new results on, and applications of, interpolation in numerical computation , 2016 .
[3] Lloyd N. Trefethen,et al. Trigonometric Interpolation and Quadrature in Perturbed Points , 2016, SIAM J. Numer. Anal..
[4] Lloyd N. Trefethen. Computing with functions in two dimensions , 2014 .
[5] Vladimir Rokhlin,et al. Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..
[6] Stefan Kunis,et al. Fast evaluation of real and complex exponential sums , 2016, 1606.03255.
[7] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[8] Michael Frankfurter,et al. The Nonuniform Discrete Fourier Transform And Its Applications In Signal Processing , 2016 .
[9] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[12] Sheehan Olver,et al. Fast polynomial transforms based on Toeplitz and Hankel matrices , 2016, Math. Comput..
[13] Stefan Kunis,et al. Nonequispaced fast Fourier transforms without oversampling , 2008 .
[14] Leslie Greengard,et al. Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..
[15] Jeffrey A. Fessler,et al. Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..
[16] Chris Anderson,et al. Rapid Computation of the Discrete Fourier Transform , 1996, SIAM J. Sci. Comput..
[17] Mark Ainsworth,et al. Wavelets, multilevel methods and elliptic PDEs , 1997 .
[18] Gabriele Steidl,et al. Fast Summation at Nonequispaced Knots by NFFT , 2003, SIAM J. Sci. Comput..
[19] R. Beatson,et al. A short course on fast multipole methods , 1997 .
[20] Gabriele Steidl,et al. Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .
[21] Alex Townsend,et al. Computing with Functions in Spherical and Polar Geometries I. The Sphere , 2015, SIAM J. Sci. Comput..
[22] L. Greengard,et al. Short Note: The type 3 nonuniform FFT and its applications , 2005 .
[23] Steven G. Johnson,et al. FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).
[24] Antony Ware,et al. Fast Approximate Fourier Transforms for Irregularly Spaced Data , 1998, SIAM Rev..
[25] John P. Boyd,et al. A fast algorithm for Chebyshev, Fourier, and sinc interpolation onto an irregular grid , 1992 .
[26] L. Greengard,et al. The type 3 nonuniform FFT and its applications June - , 2005 .