General Purpose Optimization Library (GPOL): A Flexible and Efficient Multi-Purpose Optimization Library in Python

Bakurov, I., Buzzelli, M., Castelli, M., Vanneschi, L., & Schettini, R. (2021). General purpose optimization library (Gpol): A flexible and efficient multi-purpose optimization library in python. Applied Sciences (Switzerland), 11(11), 1-34. [4774]. https://doi.org/10.3390/app11114774

[1]  Ute Schmid Inductive Synthesis of Functional Programs , 2003, Lecture Notes in Computer Science.

[2]  Leonardo Vanneschi,et al.  PSO-Based Search Rules for Aerial Swarms Against Unexplored Vector Fields via Genetic Programming , 2018, PPSN.

[3]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[4]  Ute Schmid,et al.  Inductive Synthesis of Functional Programs: An Explanation Based Generalization Approach , 2006, J. Mach. Learn. Res..

[5]  Leonardo Vanneschi,et al.  A C++ framework for geometric semantic genetic programming , 2014, Genetic Programming and Evolvable Machines.

[6]  Responding to Causal Uncertainty Through Abstract Thinking , 2019, Current Directions in Psychological Science.

[7]  Carlos M. Fonseca,et al.  Semantic Learning Machine: A Feedforward Neural Network Construction Algorithm Inspired by Geometric Semantic Genetic Programming , 2015, EPIA.

[8]  Leonardo Vanneschi,et al.  A survey of semantic methods in genetic programming , 2014, Genetic Programming and Evolvable Machines.

[9]  Robin R. Vallacher,et al.  Levels of personal agency: Individual variation in action identification. , 1989 .

[10]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[11]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[12]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .

[13]  Ausif Mahmood,et al.  Differential Evolution: A Survey and Analysis , 2018, Applied Sciences.

[14]  Riccardo Poli,et al.  Genetic Programming - Introduction, Applications, Theory and Open Issues , 2012, Handbook of Natural Computing.

[15]  F. Glover,et al.  Metaheuristics , 2016, Springer International Publishing.

[16]  Leonardo Vanneschi,et al.  Parameter evaluation of geometric semantic genetic programming in pharmacokinetics , 2016, Int. J. Bio Inspired Comput..

[17]  Leonardo Vanneschi,et al.  Geometric Semantic Genetic Programming for Real Life Applications , 2013, GPTP.

[18]  Leonardo Vanneschi,et al.  An efficient implementation of geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics , 2013, GECCO.

[19]  D. Rubinfeld,et al.  Hedonic housing prices and the demand for clean air , 1978 .

[20]  Javier Del Ser,et al.  jMetalPy: a Python Framework for Multi-Objective Optimization with Metaheuristics , 2019, Swarm Evol. Comput..

[21]  Leonardo Vanneschi,et al.  EDDA-V2 - An Improvement of the Evolutionary Demes Despeciation Algorithm , 2018, PPSN.

[22]  Pavel Karban,et al.  FEM based robust design optimization with Agros and Ārtap , 2020, Comput. Math. Appl..

[23]  Daniël H. J. Wigboldus,et al.  Abstract thinking increases one's sense of power , 2008 .

[24]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[25]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[26]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[27]  Krzysztof Krawiec,et al.  Geometric Semantic Genetic Programming , 2012, PPSN.

[28]  Leonardo Vanneschi,et al.  An Introduction to Geometric Semantic Genetic Programming , 2015, NEO.

[29]  Leonardo Vanneschi,et al.  Supporting Medical Decisions for Treating Rare Diseases Through Genetic Programming , 2019, EvoApplications.

[30]  Sanaz Mostaghim,et al.  PSO-based Search mechanism in dynamic environments: Swarms in Vector Fields , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[31]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[32]  Jason Sheng-Hong Tsai,et al.  Improving Differential Evolution With a Successful-Parent-Selecting Framework , 2015, IEEE Transactions on Evolutionary Computation.