Validation of LIRIC aerosol concentration retrievals using airborne measurements during a biomass burning episode over Athens

[1]  Franco Marenco,et al.  Profiling aerosol optical, microphysical and hygroscopic properties in ambient conditions by combining in situ and remote sensing , 2016 .

[2]  L. Alados-Arboledas,et al.  A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event , 2016 .

[3]  V. Freudenthaler,et al.  Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET , 2015 .

[4]  U. Wandinger,et al.  Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign , 2015 .

[5]  A. Nenes,et al.  Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability , 2015 .

[6]  Albert Ansmann,et al.  Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements , 2015 .

[7]  Qi Zhang,et al.  Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis , 2015 .

[8]  L. Mona,et al.  A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals , 2015 .

[9]  G. Biskos,et al.  Aerosol chemistry above an extended archipelago of the eastern Mediterranean basin during strong northern winds , 2015 .

[10]  K. Lehtinen,et al.  One year of Raman lidar observations of free-tropospheric aerosol layers over South Africa , 2015 .

[11]  G. Biskos,et al.  Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign. , 2015, The Science of the total environment.

[12]  D. Nicolae,et al.  Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study. , 2014, The Science of the total environment.

[13]  Nobuo Sugimoto,et al.  Characterization of aerosols in East Asia with the Asian Dust and Aerosol Lidar Observation Network (AD-Net) , 2014, Asia-Pacific Environmental Remote Sensing.

[14]  A. Ansmann,et al.  Fine and coarse dust separation with polarization lidar , 2014 .

[15]  J. R. Hite,et al.  Fine-particle water and pH in the southeastern United States , 2014 .

[16]  V. Freudenthaler,et al.  EARLINET: towards an advanced sustainable European aerosol lidar network , 2014 .

[17]  A. Ansmann,et al.  Retrieving aerosol microphysical properties by Lidar‐Radiometer Inversion Code (LIRIC) for different aerosol types , 2014 .

[18]  G. Biskos,et al.  Chemical composition and hygroscopic properties of aerosol particles over the Aegean Sea , 2013 .

[19]  José María Baldasano Recio,et al.  Application of a synergetic lidar and sunphotometer algorithm for the characterization of a dust event over Athens, Greece , 2013 .

[20]  Gerhard Wotawa,et al.  The Lagrangian particle dispersion model FLEXPART-WRF version 3.1 , 2013 .

[21]  A. Stohl,et al.  Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajokull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements , 2013 .

[22]  J. Snider,et al.  Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution , 2013 .

[23]  D. Tanré,et al.  Enhancement of aerosol characterization using synergy of lidar and sun - photometer coincident observations: the GARRLiC algorithm , 2013 .

[24]  David N Whiteman,et al.  New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols , 2013 .

[25]  E. Welton,et al.  Micro-Pulse Lidar Signals: Uncertainty Analysis , 2013 .

[26]  P. Seifert,et al.  Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust , 2013 .

[27]  P. Seifert,et al.  Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes , 2012 .

[28]  B. Weinzierl,et al.  Aerosol classification by airborne high spectral resolution lidar observations , 2012 .

[29]  A. Minikin,et al.  Particle sizing calibration with refractive index correction for light scattering optical particle counters and impacts upon PCASP and CDP data collected during the Fennec campaign , 2012 .

[30]  C. Pérez García-Pando,et al.  Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East , 2012 .

[31]  J. Seinfeld,et al.  Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes , 2011 .

[32]  Albert Ansmann,et al.  Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010 , 2011 .

[33]  R. Ferrare,et al.  Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples , 2011 .

[34]  V. Freudenthaler,et al.  Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2 , 2011 .

[35]  P. D. Girolamo,et al.  APPLICATION OF RANDOMLY ORIENTED SPHEROIDS FORRETRIEVAL OF DUST PARTICLE PARAMETERS FROM MULTIWAVELENGTH LIDAR MEASUREMENTS , 2010 .

[36]  Francesc Rocadenbosch,et al.  Practical analytical backscatter error bars for elastic one-component lidar inversion algorithm. , 2010, Applied optics.

[37]  E. Highwood,et al.  Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction , 2010 .

[38]  Dylan B. A. Jones,et al.  Ozone production in boreal fire smoke plumes using observations from the Tropospheric Emission Spectrometer and the Ozone Monitoring Instrument , 2009 .

[39]  V. Freudenthaler,et al.  Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 , 2009 .

[40]  A. Stohl,et al.  Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements , 2008 .

[41]  L. Mona,et al.  Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002) , 2008 .

[42]  A. Nenes,et al.  ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K + –Ca 2+ –Mg 2+ –NH 4 + –Na + –SO 4 2− –NO 3 − –Cl − –H 2 O aerosols , 2007 .

[43]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[44]  Who Europe Air Quality Guidelines Global Update 2005: Particulate Matter, ozone, nitrogen dioxide and sulfur dioxide , 2006 .

[45]  J. Baldasano,et al.  Interactive dust‐radiation modeling: A step to improve weather forecasts , 2006 .

[46]  V. Cachorro,et al.  A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling , 2006 .

[47]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[48]  Chris A. Hostetler,et al.  Calibration Technique for Polarization-Sensitive Lidars , 2006 .

[49]  Christos Zerefos,et al.  Four‐year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET) , 2005 .

[50]  Albert Ansmann,et al.  Multiyear aerosol observations with dual‐wavelength Raman lidar in the framework of EARLINET , 2004 .

[51]  Francesc Rocadenbosch,et al.  Effects of noise on lidar data inversion with the backward algorithm. , 2004, Applied optics.

[52]  J. Bösenberg,et al.  EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology , 2003 .

[53]  Jens Reichardt,et al.  Three-signal method for accurate measurements of depolarization ratio with lidar. , 2003, Applied optics.

[54]  Hugh Coe,et al.  Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis , 2003 .

[55]  U. Wandinger,et al.  Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. , 2002, Applied optics.

[56]  H. Jonsson,et al.  The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations , 2001 .

[57]  Barbara J. Turpin,et al.  Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass , 2001 .

[58]  J. Biele,et al.  Polarization Lidar: Correction of instrumental effects. , 2000, Optics express.

[59]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[60]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[61]  A. Adriani,et al.  Comparison of various linear depolarization parameters measured by lidar. , 1999, Applied optics.

[62]  A. Ansmann,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.

[63]  A. Stohl,et al.  Validation of the lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data , 1998 .

[64]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[65]  J. Ackermann The Extinction-to-Backscatter Ratio of Tropospheric Aerosol: A Numerical Study , 1998 .

[66]  A. Ansmann,et al.  Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. , 1992, Applied optics.

[67]  S. H. Melfi,et al.  Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.

[68]  A. Ansmann,et al.  Measurement of atmospheric aerosol extinction profiles with a Raman lidar. , 1990, Optics letters.

[69]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[70]  Benjamin M. Herman,et al.  Determination of aerosol height distributions by lidar , 1972 .

[71]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[72]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[73]  Kenneth Sassen,et al.  Polarization in Lidar , 2005 .

[74]  E. Eloranta High Spectral Resolution Lidar , 2005 .

[75]  T. W. Chan,et al.  Atmospheric Chemistry and Physics Aerosol particle size distributions in the lower Fraser Valley: , 2004 .

[76]  M. Wendisch,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment. , 2000, Applied optics.

[77]  Paul C. Simon,et al.  Instrument Development for Atmospheric Research and Monitoring , 1997 .

[78]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[79]  C E Kolb,et al.  Guest Editor: Albert Viggiano CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER , 2022 .