Optimal Puncturing Ratios and Energy Allocation for Multiple Parallel Concatenated Codes

We propose a systematic design framework for optimal, low-complexity punctured multiple parallel concatenated codes (MPCCs), based on minimizing the convergence threshold using extrinsic information transfer (EXIT) charts. As the convergence threshold is related to the area between the two EXIT curves, the corresponding optimization problem is equivalent to a curve-fitting problem. The EXIT curves are determined by the respective EXIT functions of the constituents, which can be conveniently shaped through the use of random puncturing and unequal energy allocations across parallel coding streams. The design task is therefore to find the optimal combination of constituents, puncturing ratios, and energy allocation for matching the EXIT curves. A search over all rate-one convolutional codes of memory length four or less is performed, identifying 98 classes of codes with unique EXIT functions out of a total of 310 codes. Low-complexity MPCCs with up to four constituents are found, where the convergence thresholds are observed to be within 0.1 dB or less of the fundamental minimum signal-to-noise ratio (SNR) corresponding to the binary phase-shift keying (BPSK) capacity for code rates 1/3 les R les 7/8. Further allowing for unequal energy allocation, the convergence thresholds for lower code rates are similarly improved.

[1]  Lars K. Rasmussen,et al.  Multiple parallel concatenated codes with optimal puncturing and energy distribution , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[2]  Johannes B. Huber,et al.  Design of \Multiple{Turbo{Codes" with Transfer Characteristics of Component Codes , 2002 .

[3]  Alex J. Grant,et al.  Optimal puncturing for multiple parallel concatenated codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[4]  Stephan ten Brink,et al.  Design of repeat-accumulate codes for iterative detection and decoding , 2003, IEEE Trans. Signal Process..

[5]  Daniel J. Costello,et al.  On the design of high rate multiple turbo codes , 2006, 2006 IEEE International Symposium on Information Theory.

[6]  Alex J. Grant,et al.  Convergence analysis and optimal scheduling for multiple concatenated codes , 2005, IEEE Transactions on Information Theory.

[7]  Ching He On the Performance of Low Complexity Multiple Turbo Codes , 2001 .

[8]  Laurence B. Milstein,et al.  On the performance of hybrid FEC/ARQ systems using rate compatible punctured turbo (RCPT) codes , 2000, IEEE Trans. Commun..

[9]  Elisabeth Uhlemann Adaptive Concatenated Coding for Wireless Real-Time Communications , 2004 .

[10]  Dariush Divsalar,et al.  Multiple turbo codes , 1995, Proceedings of MILCOM '95.

[11]  S. S. Pietrobon,et al.  Rate compatible turbo codes , 1995 .

[12]  William E. Ryan,et al.  Punctured turbo-codes for BPSK/QPSK channels , 1999, IEEE Trans. Commun..

[13]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[14]  D. Divsalar,et al.  Multiple turbo codes for deep-space communications , 1995 .

[15]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[16]  Gordon L. Stüber,et al.  A novel ARQ technique using the turbo coding principle , 1997, IEEE Communications Letters.

[17]  Peter Adam Hoeher,et al.  Partially Systematic Rate 1/2 Turbo Codes , 2000 .

[18]  R. Urbanke,et al.  On the minimum distance of parallel and serially concatenated codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[19]  G. Kramer,et al.  Code rate and the area under extrinsic information transfer curves , 2002, Proceedings IEEE International Symposium on Information Theory,.

[20]  E. Ziegel Beta Mathematics Handbook , 1991 .

[21]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[22]  Joachim Hagenauer,et al.  The turbo-fountain , 2006, Eur. Trans. Telecommun..

[23]  Lars K. Rasmussen,et al.  Non-data-aided parameter estimation in an additive white gaussian noise channel , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[24]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[25]  M. Ardakani,et al.  LDPC Coding for Non-Uniform Power-Line Channels , 2006, 2006 IEEE International Symposium on Power Line Communications and Its Applications.

[26]  Lars K. Rasmussen,et al.  Optimal scheduling for multiple serially concatenated codes , 2003 .

[27]  S. ten Brink Convergence of multidimensional iterative decoding schemes , 2001 .

[28]  Fulvio Babich,et al.  Some notes on rate-compatible punctured turbo codes (RCPTC) design , 2004, IEEE Transactions on Communications.

[29]  Dariush Divsalar,et al.  Iterative turbo decoder analysis based on density evolution , 2001, IEEE J. Sel. Areas Commun..

[30]  Nazanin Rahnavard,et al.  Nonuniform error correction using low-density parity-check codes , 2005, IEEE Transactions on Information Theory.

[31]  Andrea Montanari,et al.  Maximum a posteriori decoding and turbo codes for general memoryless channels , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[32]  Dariush Divsalar,et al.  A soft-input soft-output APP module for iterative decoding of concatenated codes , 1997, IEEE Communications Letters.

[33]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[34]  A. Grant,et al.  Optimal scheduling for iterative decoding , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[35]  S. ten Brink Convergence of multidimensional iterative decoding schemes , 2001, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256).

[36]  Fredrik Brannstrom,et al.  Convergence Analysis and Design of Multiple Concatenated Codes , 2004 .

[37]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[38]  Marco Breiling,et al.  A logarithmic upper bound on the minimum distance of turbo codes , 2004, IEEE Transactions on Information Theory.

[39]  S. Brink Rate one-half code for approaching the Shannon limit by 0.1 dB , 2000 .

[40]  O. Y. Takeshita,et al.  On the decoding structure for multiple turbo codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[41]  S. ten Brink,et al.  Code doping for triggering iterative decoding convergence , 2001 .