Molecular Physics of Elementary Processes Relevant to Hypersonics: Atom-Molecule, Molecule-Molecule and Atoms-Surface Processes
暂无分享,去创建一个
Antonio Laganà | Pablo Gamallo | Fernando Pirani | Andrea Lombardi | F. Esposito | M. Rutigliano | P. Gamallo | F. Pirani | A. Lombardi | R. Sayós | A. Laganà | F. Esposito | I. Armenise | M. Cacciatore | Ramón Sayós | M. Cacciatore | M. Rutigliano | I. Armenise
[1] Antonio Laganà,et al. An innovative synergistic grid approach to the computational study of protein aggregation mechanisms , 2014, Journal of Molecular Modeling.
[2] G. D. Billing. Dynamics of molecule surface interactions , 2000 .
[3] Russell M. Cummings,et al. Critical Hypersonic Aerothermodynamic Phenomena , 2006 .
[4] Andrea Lombardi,et al. A full dimensional grid empowered simulation of the CO2 + CO2 processes , 2012, J. Comput. Chem..
[5] Noelia Faginas Lago,et al. A high‐level ab initio study of the N2 + N2 reaction channel , 2013, J. Comput. Chem..
[6] P. Gamallo,et al. Ab initio derived analytical fits of the two lowest triplet potential energy surfaces and theoretical rate constants for the N(4S)+NO(X 2Π) system , 2003 .
[7] Antonio Laganà,et al. Reaction and molecular dynamics , 2000 .
[8] Antonio Laganà,et al. A priori molecular virtual reality on EGEE grid , 2010 .
[9] Dock-Chil Che,et al. Aligned molecules: chirality discrimination in photodissociation and in molecular dynamics , 2013, Rendiconti Lincei.
[10] T. Orlikowski. Close-coupling calculations of the cross sections and relaxation rates for ro-vibrational transitions in H2 colliding with He , 1981 .
[11] Ernesto Garcia,et al. A detailed comparison of centrifugal sudden and J-shift estimates of the reactive properties of the N + N2 reaction. , 2009, Physical chemistry chemical physics : PCCP.
[12] G. D. Billing,et al. Eley-Rideal and Langmuir-Hinshelwood Recombination Coefficients for Oxygen on Silica Surfaces , 1999 .
[13] Michael J. Pilling,et al. Summary table of evaluated kinetic data for combustion modeling: Supplement 1 , 1994 .
[14] G. D. Billing,et al. Dynamical relaxation of H2(v,j) on a copper surface , 1990 .
[15] M. Albertí,et al. A portable intermolecular potential for molecular dynamics studies of NMA-NMA and NMA-H2O aggregates. , 2011, Physical chemistry chemical physics : PCCP.
[16] Quasiclassical Rate Coefficients for the H2+H2 Reaction and Dissociation , 2002 .
[17] P. Gamallo,et al. DFT and kinetics study of O/O2 mixtures reacting over a graphite (0001) basal surface , 2011 .
[18] R. Sayós,et al. Eley-Rideal reaction dynamics between O atoms on β-cristobalite (100) surface: a new interpolated potential energy surface and classical trajectory study , 2009 .
[19] Antonio Laganà,et al. Towards a Full Dimensional Exact Quantum Calculation of the Li + HF Reactive Cross Section , 2004, ICCSA.
[20] Antonio Laganà,et al. Water (H2O) m or Benzene (C6H6) n Aggregates to Solvate the K + ? , 2013, ICCSA.
[21] F. Esposito,et al. Selective vibrational pumping of molecular hydrogen via gas phase atomic recombination. , 2009, The journal of physical chemistry. A.
[22] Antonio Laganà,et al. COMPCHEM: Progress Towards GEMS a Grid Empowered Molecular Simulator and Beyond , 2010, Journal of Grid Computing.
[23] Andrea Lombardi,et al. Design and implementation of a Grid application for direct calculations of reactive rates , 2013 .
[24] A. Garscadden,et al. Non-equilibrium vibrational kinetics in nitrogen glow discharges , 1994 .
[25] G. S. R. Sarma,et al. Relevance of Aerothermochemistry for Hypersonic Technology , 1996 .
[26] Paul Muchnick,et al. The HeH2 energy surface , 1994 .
[27] Vincenzo Aquilanti,et al. Molecular alignment and chirality in gaseous streams and vortices , 2013, Rendiconti Lincei.
[28] V. Barone,et al. Oxygen adsorption on beta-cristobalite polymorph: ab initio modeling and semiclassical time-dependent dynamics. , 2009, The journal of physical chemistry. A.
[29] C. Bruno,et al. Model for Heterogeneous Catalysis on Metal Surfaces with Applications to Hypersonic Flows , 1996 .
[30] B. Laub,et al. Thermal protection system technology and facility needs for demanding future planetary missions , 2004 .
[31] Marzio Rosi,et al. Modeling the Intermolecular Interactions and Characterization of the Dynamics of Collisional Autoionization Processes , 2013, ICCSA.
[32] J. Norman Bardsley,et al. Nonequilibrium processes in partially ionized gases , 1990 .
[33] F. Pirani,et al. A bond-bond description of the intermolecular interaction energy: the case of weakly bound N(2)-H(2) and N(2)-N(2) complexes. , 2008, Physical chemistry chemical physics : PCCP.
[34] Osvaldo Gervasi,et al. On the Structuring of the Computational Chemistry Virtual Organization COMPCHEM , 2006, ICCSA.
[35] Antonio Laganà,et al. A Grid Molecular Simulator for E-Science , 2005, EGC.
[36] Michael J. Pilling,et al. Erratum: Evaluated Kinetic Data for Combustion Modeling. Supplement I [J. Phys. Chem. Ref. Data 23, 847 (1994)] , 1995 .
[37] Raymond W. Walker,et al. Evaluated kinetic data for combustion modelling supplement I , 1994 .
[38] Antonio Laganà,et al. A Bond-Bond Portable Approach to Intermolecular Interactions: Simulations for N-methylacetamide and Carbon Dioxide Dimers , 2012, ICCSA.
[39] R. C. Forrey,et al. Quasiresonant Energy Transfer in Ultracold Atom-Diatom Collisions , 1999 .
[40] P. Gnoffo. Planetary-Entry Gas Dynamics , 1999 .
[41] P. Gamallo,et al. Adsorption of atomic oxygen and nitrogen at beta-cristobalite (100): a density functional theory study. , 2005, The journal of physical chemistry. B.
[42] F. Esposito,et al. Molecular Dynamics for State-to-State Kinetics of Non-Equilibrium Molecular Plasmas: State of Art and Perspectives , 2009 .
[43] Peter G. Martin,et al. Accurate analytic He–H2 potential energy surface from a greatly expanded set of ab initio energies , 2003 .
[44] Antonio Laganà,et al. Grid Enabled High Level ab initio Electronic Structure Calculations for the N2+N2 Exchange Reaction , 2012, ICCSA.
[45] A. Kolesnikov,et al. Experimental and Theoretical Simulation of Heterogeneous Catalysis in Aerothermochemistry (a Review) , 2005 .
[46] F. Esposito,et al. Quasiclassical trajectory calculations of vibrationally specific dissociation cross-sections and rate constants for the reaction O+O2(v)→3O , 2002 .
[47] A. Laganà,et al. Microscopic branching processes: The O + O2 reaction and its relaxed potential representations , 2010 .
[48] Mario Capitelli,et al. Quasi-classical dynamics calculations and state-selected rate coefficients for H+H2(v,j)→3H processes: application to the global dissociation rate under thermal conditions , 1999 .
[49] Antonio Laganà,et al. Efficient Workload Distribution Bridging HTC and HPC in Scientific Computing , 2012, ICCSA.
[50] F. Esposito,et al. Extracting Cross Sections from Rate Coefficients: Application to Molecular Gas Dissociation , 2011 .
[51] Andrea Lombardi,et al. Modeling of energy transfer from vibrationally excited CO2 molecules: cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas. , 2013, The journal of physical chemistry. A.
[52] P. Gamallo,et al. Recombination and chemical energy accommodation coefficients from chemical dynamics simulations: O/O2 mixtures reacting over a β-cristobalite (001) surface. , 2011, Physical chemistry chemical physics : PCCP.
[53] R. Sayós,et al. New analytical (2A′,4A′) surfaces and theoretical rate constants for the N(4S)+O2 reaction , 2002 .
[54] P. Gamallo,et al. Quantum mechanical and quasiclassical Born–Oppenheimer dynamics of the reaction N2X1Σg++O3P→N(4S)+NOX2Π on the N2O a∼3A″ and b∼3A′ surfaces , 2012 .
[55] P. Gamallo,et al. Ab initio study of the two lowest triplet potential energy surfaces involved in the N(4S)+ NO (X 2Π) reaction , 2003 .