Molecular Physics of Elementary Processes Relevant to Hypersonics: Atom-Molecule, Molecule-Molecule and Atoms-Surface Processes

In the present chapter some prototype gas and gas-surface processes occurring within the hypersonic flow layer surrounding spacecrafts at planetary entry are discussed. The discussion is based on microscopic dynamical calculations of the detailed cross sections and rate coefficients performed using classical mechanics treatments for atoms, molecules and surfaces. Such treatment allows the evaluation of the efficiency of thermal processes (both at equilibrium and non equilibrium distributions) based on state-to-state and state specific calculations properly averaged over the population of the initial states. The dependence of the efficiency of the considered processes on the initial partitioning of energy among the various degrees of freedom is discussed.

[1]  Antonio Laganà,et al.  An innovative synergistic grid approach to the computational study of protein aggregation mechanisms , 2014, Journal of Molecular Modeling.

[2]  G. D. Billing Dynamics of molecule surface interactions , 2000 .

[3]  Russell M. Cummings,et al.  Critical Hypersonic Aerothermodynamic Phenomena , 2006 .

[4]  Andrea Lombardi,et al.  A full dimensional grid empowered simulation of the CO2 + CO2 processes , 2012, J. Comput. Chem..

[5]  Noelia Faginas Lago,et al.  A high‐level ab initio study of the N2 + N2 reaction channel , 2013, J. Comput. Chem..

[6]  P. Gamallo,et al.  Ab initio derived analytical fits of the two lowest triplet potential energy surfaces and theoretical rate constants for the N(4S)+NO(X 2Π) system , 2003 .

[7]  Antonio Laganà,et al.  Reaction and molecular dynamics , 2000 .

[8]  Antonio Laganà,et al.  A priori molecular virtual reality on EGEE grid , 2010 .

[9]  Dock-Chil Che,et al.  Aligned molecules: chirality discrimination in photodissociation and in molecular dynamics , 2013, Rendiconti Lincei.

[10]  T. Orlikowski Close-coupling calculations of the cross sections and relaxation rates for ro-vibrational transitions in H2 colliding with He , 1981 .

[11]  Ernesto Garcia,et al.  A detailed comparison of centrifugal sudden and J-shift estimates of the reactive properties of the N + N2 reaction. , 2009, Physical chemistry chemical physics : PCCP.

[12]  G. D. Billing,et al.  Eley-Rideal and Langmuir-Hinshelwood Recombination Coefficients for Oxygen on Silica Surfaces , 1999 .

[13]  Michael J. Pilling,et al.  Summary table of evaluated kinetic data for combustion modeling: Supplement 1 , 1994 .

[14]  G. D. Billing,et al.  Dynamical relaxation of H2(v,j) on a copper surface , 1990 .

[15]  M. Albertí,et al.  A portable intermolecular potential for molecular dynamics studies of NMA-NMA and NMA-H2O aggregates. , 2011, Physical chemistry chemical physics : PCCP.

[16]  Quasiclassical Rate Coefficients for the H2+H2 Reaction and Dissociation , 2002 .

[17]  P. Gamallo,et al.  DFT and kinetics study of O/O2 mixtures reacting over a graphite (0001) basal surface , 2011 .

[18]  R. Sayós,et al.  Eley-Rideal reaction dynamics between O atoms on β-cristobalite (100) surface: a new interpolated potential energy surface and classical trajectory study , 2009 .

[19]  Antonio Laganà,et al.  Towards a Full Dimensional Exact Quantum Calculation of the Li + HF Reactive Cross Section , 2004, ICCSA.

[20]  Antonio Laganà,et al.  Water (H2O) m or Benzene (C6H6) n Aggregates to Solvate the K + ? , 2013, ICCSA.

[21]  F. Esposito,et al.  Selective vibrational pumping of molecular hydrogen via gas phase atomic recombination. , 2009, The journal of physical chemistry. A.

[22]  Antonio Laganà,et al.  COMPCHEM: Progress Towards GEMS a Grid Empowered Molecular Simulator and Beyond , 2010, Journal of Grid Computing.

[23]  Andrea Lombardi,et al.  Design and implementation of a Grid application for direct calculations of reactive rates , 2013 .

[24]  A. Garscadden,et al.  Non-equilibrium vibrational kinetics in nitrogen glow discharges , 1994 .

[25]  G. S. R. Sarma,et al.  Relevance of Aerothermochemistry for Hypersonic Technology , 1996 .

[26]  Paul Muchnick,et al.  The HeH2 energy surface , 1994 .

[27]  Vincenzo Aquilanti,et al.  Molecular alignment and chirality in gaseous streams and vortices , 2013, Rendiconti Lincei.

[28]  V. Barone,et al.  Oxygen adsorption on beta-cristobalite polymorph: ab initio modeling and semiclassical time-dependent dynamics. , 2009, The journal of physical chemistry. A.

[29]  C. Bruno,et al.  Model for Heterogeneous Catalysis on Metal Surfaces with Applications to Hypersonic Flows , 1996 .

[30]  B. Laub,et al.  Thermal protection system technology and facility needs for demanding future planetary missions , 2004 .

[31]  Marzio Rosi,et al.  Modeling the Intermolecular Interactions and Characterization of the Dynamics of Collisional Autoionization Processes , 2013, ICCSA.

[32]  J. Norman Bardsley,et al.  Nonequilibrium processes in partially ionized gases , 1990 .

[33]  F. Pirani,et al.  A bond-bond description of the intermolecular interaction energy: the case of weakly bound N(2)-H(2) and N(2)-N(2) complexes. , 2008, Physical chemistry chemical physics : PCCP.

[34]  Osvaldo Gervasi,et al.  On the Structuring of the Computational Chemistry Virtual Organization COMPCHEM , 2006, ICCSA.

[35]  Antonio Laganà,et al.  A Grid Molecular Simulator for E-Science , 2005, EGC.

[36]  Michael J. Pilling,et al.  Erratum: Evaluated Kinetic Data for Combustion Modeling. Supplement I [J. Phys. Chem. Ref. Data 23, 847 (1994)] , 1995 .

[37]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[38]  Antonio Laganà,et al.  A Bond-Bond Portable Approach to Intermolecular Interactions: Simulations for N-methylacetamide and Carbon Dioxide Dimers , 2012, ICCSA.

[39]  R. C. Forrey,et al.  Quasiresonant Energy Transfer in Ultracold Atom-Diatom Collisions , 1999 .

[40]  P. Gnoffo Planetary-Entry Gas Dynamics , 1999 .

[41]  P. Gamallo,et al.  Adsorption of atomic oxygen and nitrogen at beta-cristobalite (100): a density functional theory study. , 2005, The journal of physical chemistry. B.

[42]  F. Esposito,et al.  Molecular Dynamics for State-to-State Kinetics of Non-Equilibrium Molecular Plasmas: State of Art and Perspectives , 2009 .

[43]  Peter G. Martin,et al.  Accurate analytic He–H2 potential energy surface from a greatly expanded set of ab initio energies , 2003 .

[44]  Antonio Laganà,et al.  Grid Enabled High Level ab initio Electronic Structure Calculations for the N2+N2 Exchange Reaction , 2012, ICCSA.

[45]  A. Kolesnikov,et al.  Experimental and Theoretical Simulation of Heterogeneous Catalysis in Aerothermochemistry (a Review) , 2005 .

[46]  F. Esposito,et al.  Quasiclassical trajectory calculations of vibrationally specific dissociation cross-sections and rate constants for the reaction O+O2(v)→3O , 2002 .

[47]  A. Laganà,et al.  Microscopic branching processes: The O + O2 reaction and its relaxed potential representations , 2010 .

[48]  Mario Capitelli,et al.  Quasi-classical dynamics calculations and state-selected rate coefficients for H+H2(v,j)→3H processes: application to the global dissociation rate under thermal conditions , 1999 .

[49]  Antonio Laganà,et al.  Efficient Workload Distribution Bridging HTC and HPC in Scientific Computing , 2012, ICCSA.

[50]  F. Esposito,et al.  Extracting Cross Sections from Rate Coefficients: Application to Molecular Gas Dissociation , 2011 .

[51]  Andrea Lombardi,et al.  Modeling of energy transfer from vibrationally excited CO2 molecules: cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas. , 2013, The journal of physical chemistry. A.

[52]  P. Gamallo,et al.  Recombination and chemical energy accommodation coefficients from chemical dynamics simulations: O/O2 mixtures reacting over a β-cristobalite (001) surface. , 2011, Physical chemistry chemical physics : PCCP.

[53]  R. Sayós,et al.  New analytical (2A′,4A′) surfaces and theoretical rate constants for the N(4S)+O2 reaction , 2002 .

[54]  P. Gamallo,et al.  Quantum mechanical and quasiclassical Born–Oppenheimer dynamics of the reaction N2X1Σg++O3P→N(4S)+NOX2Π on the N2O a∼3A″ and b∼3A′ surfaces , 2012 .

[55]  P. Gamallo,et al.  Ab initio study of the two lowest triplet potential energy surfaces involved in the N(4S)+ NO (X 2Π) reaction , 2003 .