Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models

In linear specifications, the bias due to the presence of measurement error in a regressor can be entirely avoided when either repeated measurements or instruments are available for the mismeasured regressor. The situation is more complex in nonlinear settings. While identification and root n consistent estimation of general nonlinear specifications have recently been proven in the presence of repeated measurements, similar results relying on instruments have so far only been available for polynomial specifications and absolutely integrable regression functions. This paper addresses two unresolved issues. First, it is shown that instruments indeed allow for the fully nonparametric identification of general nonlinear regression models in the presence of measurement error. Second, when the regression function is parametrically specified, a root n consistent and asymptotically normal estimator is provided. The starting point of the proposed approach is a system of two functional equations that relate conditional expectations of observed variables to the regression function of interest, as first proposed by Hausman, Ichimura, Newey and Powell (1991) for polynomial specifications. It is shown that these two equations have a unique solution, thus establishing identification. The proposed estimation procedure relies on the same functional equations, and the proof of asymptotic normality and root n consistency is based on standard results regarding the asymptotics of semiparametric estimators

[1]  Arthur Lewbel,et al.  Semiparametric Latent Variable Model Estimation with Endogenous or Mismeasured Regressors , 1998 .

[2]  Donald W. K. Andrews,et al.  Nonparametric Kernel Estimation for Semiparametric Models , 1995, Econometric Theory.

[3]  B. L. S. Prakasa Rao,et al.  Identifiability in stochastic models , 1992 .

[4]  Whitney K. Newey,et al.  Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators , 2003 .

[5]  K. Singleton Estimation of affine asset pricing models using the empirical characteristic function , 2001 .

[6]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .

[7]  Aman Ullah,et al.  Nonparametric Econometrics: Introduction , 1999 .

[8]  Estimation in the nonlinear errors-in-variables model , 1998 .

[9]  Susanne M. Schennach Exponential specifications and measurement error , 2004 .

[10]  Whitney K. Newey Flexible Simulated Moment Estimation of Nonlinear Errors-in-Variables Models , 2001, Review of Economics and Statistics.

[11]  S. Lang,et al.  An Introduction to Fourier Analysis and Generalised Functions , 1959 .

[12]  A. Chesher Identification in Nonseparable Models , 2003 .

[13]  Quang Vuong,et al.  Nonparametric estimation of the mea-surement eror model using multiple indicators , 1998 .

[14]  Yasuo Amemiya,et al.  Instrumental variable estimator for the nonlinear errors-in-variables model , 1985 .

[15]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[16]  Liqun Wang Estimation of nonlinear models with Berkson measurement errors , 2004 .

[17]  Quang Vuong,et al.  Nonparametric Selection of Regressors: The Nonnested Case , 1996 .

[18]  Jerry A. Hausman,et al.  Nonlinear errors in variables Estimation of some Engel curves , 1995 .

[19]  Liqun Wang A simple adjustment for measurement errors in some limited dependent variable models , 2002 .

[20]  Hidehiko Ichimura,et al.  Identification and estimation of polynomial errors-in-variables models , 1991 .

[21]  A. Chesher The effect of measurement error , 1991 .

[22]  Michel Loève,et al.  Probability Theory I , 1977 .

[23]  Jean-Pierre Florens,et al.  Efficient GMM Estimation Using the Empirical Characteristic Function , 2002 .

[24]  Han Hong,et al.  Measurement Error Models with Auxiliary Data , 2005 .

[25]  Xiaohong Chen,et al.  Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions , 2003 .

[26]  W. Newey,et al.  The asymptotic variance of semiparametric estimators , 1994 .

[27]  Kevin Q. Wang,et al.  Estimation of Structural Nonlinear Errors-in-Varibles Models by Simulated Least-Squares Method , 2000 .

[28]  Cheng Hsiao,et al.  CONSISTENT ESTIMATION FOR SOME NONLINEAR ERRORS-IN- VARIABLES MODELS , 1989 .

[29]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[30]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[31]  Jianqing Fan,et al.  Nonparametric regression with errors in variables , 1993 .

[32]  G. Ridder,et al.  Estimation of Nonlinear Models with Measurement Error Using Marginal Information1 , 2004 .

[33]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[34]  L. Schwartz Théorie des distributions , 1966 .

[35]  W. Newey,et al.  Instrumental variable estimation of nonparametric models , 2003 .

[36]  Andrew Chesher,et al.  Nonparametric Identification under Discrete Variation , 2003 .

[37]  Marianthi Markatou,et al.  Semiparametric Estimation Of Regression Models For Panel Data , 1993 .

[38]  Susanne M. Schennach,et al.  NONPARAMETRIC REGRESSION IN THE PRESENCE OF MEASUREMENT ERROR , 2004, Econometric Theory.

[39]  Tong Li,et al.  Robust and consistent estimation of nonlinear errors-in-variables models , 2002 .

[40]  Susanne M. Schennach,et al.  Estimation of Nonlinear Models with Measurement Error , 2004 .

[41]  W. Newey,et al.  Convergence rates and asymptotic normality for series estimators , 1997 .

[42]  G. Shilov,et al.  DEFINITION AND SIMPLEST PROPERTIES OF GENERALIZED FUNCTIONS , 1964 .

[43]  Arthur Lewbel Demand Estimation with Expenditure Measurement Errors on the Left and Right Hand Side , 1996 .

[44]  G. Imbens,et al.  Bias From Classical and Other Forms of Measurement Error , 2000 .