Astronomical origins of life : steps towards panspermia

Preface. Panspermia 2000. Part 1: General Considerations. 1.1. On a possibly fundamental principle in Chemistry as viewed in a cosmogonic context. 1.2. Biological activity in the early solar system in its outer regions. 1.3. An object within a particle of extraterrestrial origin compared with an object of presumed terrestrial origin. 1.4. The viability with respect to temperature of micro-organisms incident on the Earth's atmosphere. 1.5. A laboratory experiment with relevance to the survival of micro-organisms entering a planetary atmosphere. 1.6. Biological Evolution. 1.7. Metallic particles in astronomy. 1.8. The Universe and Life: Deductions from the weak Anthropic Principle. 1.9. Miller Urey synthesis in the nuclei of galaxies. Part 2: Cosmic Organic Polymers. 2.1. Formaldehyde polymers in interstellar space. 2.2. Formaldehyde polymers in comets. 2.3. Composition of cometary dust: the case against silicates. 2.4. Primitive grain clumps and organic compounds in carbonaceous chondrites. 2.5. Spectroscopic evidence for interstallar grain clumps in meteoritic inclusions. 2.6. Calculations of infrared fluxes from galactic sources for a polysaccharide grain model. Part 3: Cosmic Micro-Organisms: Infrared Characterisation. 3.1. Infrared spectroscopy of micro-organisms near 3,4lambdam in relation to geology and astronomy. 3.2. Infrared spectroscopy over the 2.9-3.9 lambdam waveband in biochemistry and astronomy. 3.3. 2.8-3.6lambdam spectra of micro-organisms with varying H2O ice content. 3.4. Organo-siliceous biomolecules and the infrared spectrum of the Trapezium nebula. 3.5. The spectroscopic identification of interstellar grains. 3.6. The availability of phosphorus in the bacterial model of interstellar grains. 3.7. Diatoms on Earth, Comets, Europa and in interstellar space. 3.8. A Diatom model of dust in the Trapezium nebula. 3.9. Infrared evidence for panspermia: An update. Part 4: Evidence from Interstellar Extinction. 4.1. On the nature of interstellar grains. 4.2. A model for interstellar extinction. 4.3. Ultraviolet absorbance of presumably interstellar bacteria and related matters. 4.4. The case against graphite particles in interstellar space. Part 5: Biogenic Aromatic Molecules in Space. 5.1. Organic molecules in interstellar dus: a possible spectral signature at m2200A? 5.2. Identification of the m2200A interstellar absorption feature. 5.3. A unified model for the 3.28 m emission and the 2200A interstellar extinction feasture. 5.4. Aromatic hydrocarbons in very small interstellar grains. 5.5. An integrated 2.5-12.5lm emission spectrum of naturally occurring aromatic molecules. 5.6. Biofluorescence and the extended red emission in astrophysical sources. Part 6: Comets and Life. 6.1. Comets, Ice Ages and ecological catastrophes. 6.2. Comets -- A vehicle for panspermia. 6.3. Some predictions on the nature of Comet Halley. 6.4. A model for the 2-4 m spectrum of Comet Halley. 6.5. Modelling the 5-30 m spectrum of Comet Halley. 6.6. Very small dust particles (VSDP's) in Comet C/1996B2 (Hyakuta