Polynomial processes and their applications to mathematical finance

We introduce a class of Markov processes, called m-polynomial, for which the calculation of (mixed) moments up to order m only requires the computation of matrix exponentials. This class contains affine processes, processes with quadratic diffusion coefficients, as well as Lévy-driven SDEs with affine vector fields. Thus, many popular models such as exponential Lévy models or affine models are covered by this setting. The applications range from statistical GMM estimation procedures to new techniques for option pricing and hedging. For instance, the efficient and easy computation of moments can be used for variance reduction techniques in Monte Carlo methods.

[1]  Niels Jacob,et al.  Pseudo-Differential Operators and Markov Processes , 1996 .

[2]  Philip Protter,et al.  The Euler scheme for Lévy driven stochastic differential equations , 1997 .

[3]  Marc Yor,et al.  Some Remarkable Properties of the Dunkl Martingales , 2006 .

[4]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[5]  Hao Zhou Itô Conditional Moment Generator and the Estimation of Short-Rate Processes , 2003 .

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  D. Filipović,et al.  Jump-diffusions in Hilbert spaces: existence, stability and numerics , 2008, 0810.5023.

[8]  Hiroshi Kunita,et al.  Stochastic Differential Equations Based on Lévy Processes and Stochastic Flows of Diffeomorphisms , 2004 .

[9]  F. Utzet,et al.  Time-space harmonic polynomials relative to a Levy process , 2008, 0803.0829.

[10]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[11]  M. Yor,et al.  Equivalent and absolutely continuous measure changes for jump-diffusion processes , 2005, math/0508450.

[12]  L. Rogers,et al.  Diffusions, Markov Processes and Martingales, Vol. 1, Foundations. , 1996 .

[13]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[14]  Jean Jacod,et al.  The approximate Euler method for Lévy driven stochastic differential equations , 2005 .

[15]  C. Gouriéroux,et al.  Multivariate Jacobi process with application to smooth transitions , 2006 .

[16]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[17]  A. Sengupta Time-Space Harmonic Polynomials for Continuous-Time Processes and an Extension , 2000 .

[18]  W. Schachermayer,et al.  Affine processes are regular , 2009, 0906.3392.

[19]  Jan Kallsen,et al.  A Didactic Note on Affine Stochastic Volatility Models , 2006 .

[20]  Damir Filipović,et al.  QUADRATIC TERM STRUCTURE MODELS FOR RISK‐FREE AND DEFAULTABLE RATES , 2003 .

[21]  W. Schoutens,et al.  Iterates of the infinitesimal generator and space-time harmonic polynomials of a Markov process , 2006 .

[22]  M. Sørensen,et al.  The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes , 2007 .

[23]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[24]  Manfred Reimer,et al.  Multivariate Polynomial Approximation , 2003 .

[25]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[26]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[27]  Jean Jacod,et al.  Semimartingales and Markov processes , 1980 .

[28]  Jim Gatheral The Volatility Surface: A Practitioner's Guide , 2006 .

[29]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .