The Radial Point Interpolation Mixed Collocation (RPIMC) Method for the Solution of Transient Diffusion Problems

The Radial Point Interpolation Mixed Collocation (RPIMC) method is proposed in this paper for transient analysis of diffusion problems. RPIMC is an efficient purely meshless method where the solution of the field variable is obtained through collocation. The field function and its gradient are both interpolated (mixed collocation approach) leading to reduced $C$-continuity requirement compared to strong-form collocation schemes. The method's accuracy is evaluated in heat conduction benchmark problems. The RPIMC convergence is compared against the Meshless Local Petrov-Galerkin Mixed Collocation (MLPG-MC) method and the Finite Element Method (FEM). Due to the delta Kronecker property of RPIMC, improved accuracy can be achieved as compared to MLPG-MC. RPIMC is proven to be a promising meshless alternative to FEM for transient diffusion problems.

[1]  S. Atluri,et al.  Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations , 2005 .

[2]  N. Sukumar,et al.  Cell-based maximum-entropy approximants , 2015, Computer Methods in Applied Mechanics and Engineering.

[3]  Yoram Rudy,et al.  Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation , 2011, PLoS Comput. Biol..

[4]  Adrienne S. Lavine,et al.  Principles of Heat and Mass Transfer , 2018 .

[5]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[6]  Satya N. Atluri,et al.  The basis of meshless domain discretization: the meshless local Petrov–Galerkin (MLPG) method , 2005, Adv. Comput. Math..

[7]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[8]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[9]  Karol Miller,et al.  Cell‐based maximum entropy approximants for three‐dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method , 2019, International Journal for Numerical Methods in Engineering.

[10]  Robert Vertnik,et al.  Meshfree explicit local radial basis function collocation method for diffusion problems , 2006, Comput. Math. Appl..

[11]  Satya N. Atluri,et al.  Topology-optimization of Structures Based on the MLPG Mixed Collocation Method , 2008 .

[12]  Ellen Kuhl,et al.  Generating Purkinje networks in the human heart. , 2016, Journal of biomechanics.

[13]  Indra Vir Singh,et al.  Heat transfer analysis of composite slabs using meshless element Free Galerkin method , 2006 .

[14]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[15]  Hang Ding,et al.  Meshfree weak–strong (MWS) form method and its application to incompressible flow problems , 2004 .

[16]  Gabriel Bernardino,et al.  A rule‐based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts , 2018, International journal for numerical methods in biomedical engineering.

[17]  George Nikiforidis,et al.  Truly meshless localized type techniques for the steady-state heat conduction problems for isotropic and functionally graded materials , 2011 .

[18]  E. Kansa,et al.  A stabilized RBF collocation scheme for Neumann type boundary value problems , 2008 .

[19]  I. Singh,et al.  HEAT TRANSFER ANALYSIS OF TWO-DIMENSIONAL FINS USING MESHLESS ELEMENT FREE GALERKIN METHOD , 2003 .

[20]  Lin Gao,et al.  An improved local radial point interpolation method for transient heat conduction analysis , 2013 .

[21]  Holger Wendland,et al.  Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree , 1998 .

[22]  Gui-Rong Liu,et al.  A meshfree formulation of local radial point interpolation method (LRPIM) for incompressible flow simulation , 2003 .

[23]  Koulis Pericleous,et al.  The CFD analysis of simple parabolic and elliptic MHD flows , 1994 .

[24]  Konstantinos A. Mountris,et al.  MFREE: A matlab toolkit for meshfree approximation schemes , 2020 .

[25]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[26]  A. Garfinkel,et al.  An advanced algorithm for solving partial differential equation in cardiac conduction , 1999, IEEE Transactions on Biomedical Engineering.

[27]  Guirong Liu,et al.  A meshfree radial point interpolation method (RPIM) for three-dimensional solids , 2005 .

[28]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[29]  G. E. Myers The Critical Time Step for Finite-Element Solutions to Two-Dimensional Heat-Conduction Transients , 1977 .

[30]  N. Britton Reaction-diffusion equations and their applications to biology. , 1989 .

[31]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[32]  Karol Miller,et al.  Strong-form approach to elasticity: Hybrid finite difference-meshless collocation method (FDMCM) , 2017 .

[33]  Johannes T. B. Overvelde,et al.  The Moving Node Approach in Topology Optimization , 2012 .

[34]  Satya N. Atluri,et al.  Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method For Elasticity Problems , 2006 .

[35]  YuanTong Gu,et al.  A pseudo-elastic local meshless method for analysis of material nonlinear problems in solids , 2007 .

[36]  Michael A. Golberg,et al.  Some recent results and proposals for the use of radial basis functions in the BEM , 1999 .

[37]  Haitian Yang,et al.  Solving heat transfer problems with phase change via smoothed effective heat capacity and element-free Galerkin methods , 2010 .

[38]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[39]  N Thamareerat,et al.  The meshless local Petrov–Galerkin method based on moving Kriging interpolation for solving the time fractional Navier–Stokes equations , 2016, SpringerPlus.

[40]  S. Atluri The meshless method (MLPG) for domain & BIE discretizations , 2004 .

[41]  Surya P. N. Singh,et al.  Meshless Method for Simulation of Needle Insertion into Soft Tissues: Preliminary Results , 2020 .

[42]  YuMin Cheng,et al.  The improved element-free Galerkin method for three-dimensional transient heat conduction problems , 2013 .

[43]  Mark Potse,et al.  A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart , 2006, IEEE Transactions on Biomedical Engineering.

[44]  Oscar Camara,et al.  Smoothed Particle Hydrodynamics for Electrophysiological Modeling: An Alternative to Finite Element Methods , 2017, FIMH.

[45]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[46]  Satya N. Atluri,et al.  A New Implementation of the Meshless Finite Volume Method, Through the MLPG "Mixed" Approach , 2004 .

[47]  Guangyao Li,et al.  A nodal integration technique for meshfree radial point interpolation method (NI-RPIM) , 2007 .

[48]  Satya N. Atluri,et al.  Meshless Local Petrov-Galerkin Mixed CollocationMethod for Solving Cauchy Inverse Problems ofSteady-State Heat Transfer , 2014 .