Reproducing wear mechanisms in gear hobbing : evaluation of a single insert milling test

Gear hobbing is a widely used method in industrial gear manufacturing. The most common type of hob is made of homogenous HSS and protected by a PVD coating. In order to increase the reliability and tool life of these milling tools, further developments of the tool surfaces and cutting edges are necessary. A single tooth milling test, using a HSS insert in a conventional milling machine, has been developed with the aim to reproduce the wear mechanisms seen on real HSS gear hobbing teeth. The benefits of such a test, compared to actual gear hobbing tests, are primarily accessibility and reduced costs for both design and production of test specimens (inserts). The main goal of this study was to verify that the wear mechanisms in the developed test correspond with the wear mechanisms obtained in real gear hobbing. Once this was verified, the influence of surfaces roughness on the performance of TiAlN coated HSS inserts was evaluated by using the tool as delivered or after polishing the tool surfaces. Parameters considered were tool wear, cutting forces and the quality of machined surfaces. The polished inserts, yielded less adhered work material and reduced flank wear but no significant difference in cutting forces as compared to the unpolished inserts.