The Potential of Multijunction Perovskite Solar Cells

Metal halide perovskite semiconductors offer rapid, low-cost deposition of solar cell active layers with a wide range of band gaps, making them ideal candidates for multijunction solar cells. Here, we combine optical and electrical models using experimental inputs to evaluate the feasible performances of all-perovskite double-junction (2PJ), triple-junction (3PJ), and perovskite–perovskite–silicon triple-junction (2PSJ) solar cells. Using parameters and design constraints from the current state-of-the-art generation of perovskite solar cells, we find that 2PJs can feasibly approach 32% power conversion efficiency, 3PJs can reach 33%, and 2PSJs can surpass 35%. We also outline pathways to improve light harvesting and demonstrate that it is possible to raise the performances to 34%, 37%, and 39% for the three architectures. Additionally, we discuss important future directions of research. Finally, we perform energy yield modeling to demonstrate that the multijunction solar cells should not suffer from reduc...

[1]  Henry J. Snaith,et al.  Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions , 2017 .

[2]  Moritz H. Futscher,et al.  Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions , 2017, ACS energy letters.

[3]  H. Boyen,et al.  Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. , 2017, Journal of the American Chemical Society.

[4]  W. Warta,et al.  Solar cell efficiency tables (version 50) , 2017 .

[5]  K. Catchpole,et al.  Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‐Silicon Tandem with over 26% Efficiency , 2017 .

[6]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[7]  C. Ballif,et al.  Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells , 2017 .

[8]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[9]  Kai Zhu,et al.  Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells , 2017, Nature Energy.

[10]  A. Hagfeldt,et al.  Changes from Bulk to Surface Recombination Mechanisms between Pristine and Cycled Perovskite Solar Cells , 2017 .

[11]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[12]  R. Walton,et al.  Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics , 2016, Nature Energy.

[13]  Michael D. McGehee,et al.  Light-Induced Phase Segregation in Halide-Perovskite Absorbers , 2016 .

[14]  Moritz H. Futscher,et al.  Efficiency Limit of Perovskite/Si Tandem Solar Cells , 2016 .

[15]  Zhibin Yang,et al.  Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells , 2016, Advanced materials.

[16]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[17]  Christophe Ballif,et al.  Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells , 2016 .

[18]  Christopher J. Fell,et al.  Energy yield potential of perovskite-silicon tandem devices , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[19]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[20]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[21]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[22]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[23]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[24]  Christophe Ballif,et al.  Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. , 2015, The journal of physical chemistry letters.

[25]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[26]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[27]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[28]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[29]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[30]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.