Mathematical Modelling of Peristaltic Pumping of Nano-Fluids

A theoretical study is presented to examine the peristaltic pumping with double-diffusive (thermal and concentration diffusion) convection in nano-fluids through a deformable channel. The model is motivated by the need to explore nano-fluid dynamic effects on peristaltic transport in biological vessels, as typified by transport of oxygen and carbon dioxide, food molecules, ions, wastes, hormones, and heat in blood flow. Approximate solutions are obtained under the restrictions of large wavelength and low Reynolds number, for nanoparticle fraction field, concentration field, temperature field, axial velocity, volume flow rate, pressure gradient, stream function, and wave amplitude. The influence of the dominant hydrodynamic parameters (Brownian motion, thermophoresis, Dufour and Soret) and Grashof numbers (thermal, concentration, and nanoparticle) on peristaltic flow patterns are discussed with the help of computational results obtained with the Mathematica software. The classical Newtonian viscous model, presented by Shapiro and others, constitutes a special case of the present model. Applications of the study include novel pharmaco-dynamic pumps, and engineered gastro-intestinal mechanisms.

[1]  D. Tripathi PERISTALTIC FLOW OF COUPLE-STRESS CONDUCTING FLUIDS THROUGH A POROUS CHANNEL: APPLICATIONS TO BLOOD FLOW IN THE MICRO-CIRCULATORY SYSTEM , 2011 .

[2]  Christopher G Thanos,et al.  The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. , 2006, Biomolecular engineering.

[3]  Dharmendra Tripathi,et al.  Peristaltic transport of fractional Maxwell fluids in uniform tubes: Applications in endoscopy , 2011, Comput. Math. Appl..

[4]  C. Ronco Fluid mechanics and crossfiltration in hollow-fiber hemodialyzers. , 2007, Contributions to nephrology.

[5]  Julio Soria,et al.  Fluid mechanics of flapping wings , 2008 .

[6]  Y. Fung,et al.  Peristaltic Pumping: A Bioengineering Model , 1971 .

[7]  Thomas Y. Hou,et al.  Mathematical modeling and simulation of aquatic and aerial animal locomotion , 2007, J. Comput. Phys..

[8]  Tasawar Hayat,et al.  Peristaltic Flow of a Magnetohydrodynamic Johnson–Segalman Fluid , 2005 .

[9]  D. Cahill,et al.  Nanofluids for thermal transport , 2005 .

[10]  Hélène A. Simon,et al.  FLUID MECHANICS OF ARTIFICIAL HEART VALVES , 2009, Clinical and experimental pharmacology & physiology.

[11]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[12]  Kenneth E. Goodson,et al.  Convective Performance of Nanofluids in a Laminar Thermally Developing Tube Flow , 2009 .

[13]  A. Kuznetsov,et al.  The onset of convection in a horizontal nanofluid layer of finite depth , 2010 .

[14]  J. Curiel-Sosa,et al.  Homotopy semi-numerical simulation of peristaltic flow of generalised Oldroyd-B fluids with slip effects , 2014, Computer methods in biomechanics and biomedical engineering.

[15]  M. Ferrari,et al.  Drug Delivery Systems , 2006 .

[16]  A. Siddiqui,et al.  Non-steady peristaltic propulsion with exponential variable viscosity: a study of transport through the digestive system , 2014, Computer methods in biomechanics and biomedical engineering.

[17]  M. J. Uddin,et al.  Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation , 2013 .

[18]  J. Webster Encyclopedia of Medical Devices and Instrumentation , 1988 .

[19]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[20]  T. S. Chow,et al.  Peristaltic Transport in a Circular Cylindrical Pipe , 1970 .

[21]  Rama Bhargava,et al.  Finite element study of nonlinear two-dimensional deoxygenated biomagnetic micropolar flow , 2010 .

[22]  Kai Zhang,et al.  Review of nanofluids for heat transfer applications , 2009 .

[23]  N. Akbar,et al.  Peristaltic flow of a Phan-Thien-Tanner nanofluid in a diverging tube , 2012 .

[24]  Somchai Wongwises,et al.  Critical review of heat transfer characteristics of nanofluids , 2007 .

[25]  A. Kuznetsov,et al.  The Effect of Local Thermal Nonequilibrium on the Onset of Convection in a Nanofluid , 2010 .

[26]  Ioan Pop,et al.  Boundary-layer flow of nanofluids over a moving surface in a flowing fluid , 2010 .

[27]  Mohammad Mehdi Rashidi,et al.  Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods , 2013, Comput. Biol. Medicine.

[28]  O. Anwar Bég,et al.  Network numerical analysis of hydromagnetic squeeze film flow dynamics between two parallel rotating disks with induced magnetic field effects , 2010 .

[29]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[30]  Donald A. Nield,et al.  Thermal instability in a porous medium layer saturated by a nanofluid , 2009 .

[31]  Jeffrey S. Guasto,et al.  Fluid Mechanics of Planktonic Microorganisms , 2012 .

[32]  Tasawar Hayat,et al.  Peristaltic flow of a nanofluid in a non-uniform tube , 2012 .

[33]  D Tsiklauri,et al.  Non-Newtonian effects in the peristaltic flow of a Maxwell fluid. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  T. Hayat,et al.  Slip Effects on the Peristaltic Motion of Nanofluid in a Channel With Wall Properties , 2013 .

[35]  Yoseph Bar-Cohen,et al.  Biomimetics—using nature to inspire human innovation , 2006, Bioinspiration & biomimetics.

[36]  Dharmendra Tripathi,et al.  MAGNETOHYDRODYNAMIC PERISTALTIC FLOW OF A COUPLE STRESS FLUID THROUGH COAXIAL CHANNELS CONTAINING A POROUS MEDIUM , 2012 .

[37]  Mohammad Mehdi Rashidi,et al.  Magnetohydrodynamic biorheological transport phenomena in a porous medium: A simulation of magnetic blood flow control and filtration , 2011 .

[38]  T. Hayat,et al.  Influence of wall properties on the peristaltic flow of a nanofluid: Analytic and numerical solutions , 2012 .

[39]  Mohammad Mehdi Rashidi,et al.  Differential transform semi-numerical analysis of biofluid-particle suspension flow and heat transfer in non-Darcian porous media , 2013, Computer methods in biomechanics and biomedical engineering.

[40]  O. Bég,et al.  THERMO-DIFFUSION AND DIFFUSION-THERMO EFFECTS ON FREE CONVECTION FLOW PAST A HORIZONTAL CIRCULAR CYLINDER IN A NON-DARCY POROUS MEDIUM , 2013 .

[41]  W. Shyy,et al.  Aerodynamics of Low Reynolds Number Flyers , 2007 .

[42]  Di Su,et al.  Numerical study of nanofluid infusion in deformable tissues for hyperthermia cancer treatments , 2011, Medical & Biological Engineering & Computing.

[43]  R. Tewarson,et al.  An introduction to mathematical physiology and biology , 1990 .

[44]  O. Bég,et al.  Finite element modeling of conjugate mixed convection flow of Al2O3–water nanofluid from an inclined slender hollow cylinder , 2013 .

[45]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[46]  V V Pavlov,et al.  Dolphin skin as a natural anisotropic compliant wall , 2006, Bioinspiration & biomimetics.

[47]  O. Bég,et al.  NUMERICAL STUDY OF MICROPOLAR CONVECTIVE HEAT AND MASS TRANSFER IN A NON-DARCY POROUS REGIME WITH SORET AND DUFOUR DIFFUSION EFFECTS , 2008 .

[48]  Tasawar Hayat,et al.  Peristaltic flow of a nanofluid with slip effects , 2012 .

[49]  O. Bég,et al.  NUMERICAL STUDY OF MIXED BIOCONVECTION IN POROUS MEDIA SATURATED WITH NANOFLUID CONTAINING OXYTACTIC MICROORGANISMS , 2013 .

[50]  J. Mazumdar An Introduction to Mathematical Physiology and Biology: Frontmatter , 1999 .

[51]  J. Andrews Intralabyrinthine fluid dynamics: Meniere disease , 2004, Current opinion in otolaryngology & head and neck surgery.

[52]  Mohammad Mehdi Rashidi,et al.  DTM-PADÉ SEMI-NUMERICAL SIMULATION OF NANOFLUID TRANSPORT IN POROUS MEDIA , 2013 .

[53]  Mohammad Mehdi Rashidi,et al.  DTM- Padé Modeling of Natural Convective Boundary Layer Flow of a Nanofluid Past a Vertical Surface , 2011 .

[54]  David J Brayden,et al.  Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. , 2013, International journal of pharmaceutics.

[55]  O. Bég,et al.  Analysis of the effect of normal stress differences on heat transfer in creeping viscoelastic Dean flow , 2013 .

[56]  Michel Y. Jaffrin,et al.  Inertia and streamline curvature effects on peristaltic pumping , 1973 .

[57]  Donald A. Nield,et al.  Natural convective boundary-layer flow of a nanofluid past a vertical plate , 2010 .

[58]  Mohammad Mehdi Rashidi,et al.  Homotopy simulation of axisymmetric laminar mixed convection nanofluid boundary layer flow over a vertical cylinder , 2012 .

[59]  Wolfgang Schröder,et al.  Numerical simulation of the flow field in a model of the nasal cavity , 2003 .

[60]  A. Kuznetsov,et al.  Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate , 2011 .

[61]  C. Barton,et al.  Peristaltic flow in tubes. , 1968, The Bulletin of mathematical biophysics.

[62]  D. Tripathi,et al.  Mathematical modelling of heat transfer effects on swallowing dynamics of viscoelastic food bolus through the human oesophagus , 2013 .

[63]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[64]  Mohammad Mehdi Rashidi,et al.  MULTI-STEP DTM SIMULATION OF MAGNETO-PERISTALTIC FLOW OF A CONDUCTING WILLIAMSON VISCOELASTIC FLUID , 2013 .

[65]  Shanhong Ji,et al.  Finite element analysis of fluid flows fully coupled with structural interactions , 1999 .

[66]  O. Bég,et al.  Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium , 2008 .

[67]  Mathieu S. Capcarrère,et al.  Necessary conditions for density classification by cellular automata. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  Sohail Nadeem,et al.  Endoscopic Effects on Peristaltic Flow of a Nanofluid , 2011 .

[69]  Geeta M Patel,et al.  Nanorobot: A versatile tool in nanomedicine , 2006, Journal of drug targeting.

[70]  Mohammad Mehdi Rashidi,et al.  HOMOTOPY ANALYSIS OF TRANSIENT MAGNETO-BIO-FLUID DYNAMICS OF MICROPOLAR SQUEEZE FILM IN A POROUS MEDIUM: A MODEL FOR MAGNETO-BIO-RHEOLOGICAL LUBRICATION , 2012 .

[71]  Mohammad Mehdi Rashidi,et al.  DTM-PADÉ SIMULATION OF STAGNATION-POINT NANOFLUID MECHANICS , 2013 .

[72]  W M Bayliss,et al.  The movements and innervation of the small intestine , 1899, The Journal of physiology.

[73]  Rama Bhargava,et al.  Free convection heat and mass transfer from an isothermal sphere to a micropolar regime with Soret/Dufour effects , 2011 .

[74]  L. Dykman,et al.  On the Enhanced Antibacterial Activity of Antibiotics Mixed with Gold Nanoparticles , 2009, Nanoscale research letters.

[75]  Russell Schwartz,et al.  Biological Modeling and Simulation: A Survey of Practical Models, Algorithms, and Numerical Methods , 2008 .

[76]  Bahgat Sammakia,et al.  Buoyancy-Induced Flows and Transport , 1988 .

[77]  Fan Yang,et al.  Finite element modeling of sound transmission with perforations of tympanic membrane. , 2009, The Journal of the Acoustical Society of America.

[78]  A. Kuznetsov,et al.  The onset of double-diffusive convection in a nanofluid layer , 2011 .

[79]  S. Weinberg,et al.  Peristaltic pumping with long wavelengths at low Reynolds number , 1968, Journal of Fluid Mechanics.

[80]  G. Böhme,et al.  Peristaltic Flow of Viscoelastic Liquids , 1983 .

[81]  R. Tiwari,et al.  HEAT TRANSFER AUGMENTATION IN A TWO-SIDED LID-DRIVEN DIFFERENTIALLY HEATED SQUARE CAVITY UTILIZING NANOFLUIDS , 2007 .

[82]  Rahman Saidur,et al.  A REVIEW ON APPLICATIONS AND CHALLENGES OF NANOFLUIDS , 2011 .

[84]  John O Dabiri,et al.  Fish schooling as a basis for vertical axis wind turbine farm design , 2010, Bioinspiration & biomimetics.

[85]  O. Bég,et al.  Numerical study of transient magnetohydrodynamic radiative free convection nanofluid flow from a stretching permeable surface , 2014 .

[86]  Nicholas A Peppas,et al.  Microfabricated drug delivery devices. , 2005, International journal of pharmaceutics.

[87]  Stefan Becker,et al.  Flow-structure-acoustic interaction in a human voice model. , 2009, The Journal of the Acoustical Society of America.

[88]  R. Grebe,et al.  Three Dimensional Modeling of the Cerebrospinal Fluid Dynamics and Brain Interactions in the Aqueduct of Sylvius , 2003, Computer methods in biomechanics and biomedical engineering.