Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities

When a heavy fluid is placed above a light fluid, tiny vertical perturbations in the interface create a characteristic structure of rising bubbles and falling spikes known as Rayleigh-Taylor instability. Rayleigh-Taylor instabilities have received much attention over the past half-century because of their importance in understanding many natural and man-made phenomena, ranging from the rate of formation of heavy elements in supernovae to the design of capsules for Inertial Confinement Fusion. We present a new approach to analyze Rayleigh-Taylor instabilities in which we extract a hierarchical segmentation of the mixing envelope surface to identify bubbles and analyze analogous segmentations of fields on the original interface plane. We compute meaningful statistical information that reveals the evolution of topological features and corroborates the observations made by scientists.

[1]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[2]  Deborah Silver,et al.  Visualizing features and tracking their evolution , 1994, Computer.

[3]  Xin Wang,et al.  Tracking and Visualizing Turbulent 3D Features , 1997, IEEE Trans. Vis. Comput. Graph..

[4]  Xin Wang,et al.  Tracking scalar features in unstructured data sets , 1998 .

[5]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[6]  Paul E. Dimotakis,et al.  Transition stages of Rayleigh–Taylor instability between miscible fluids , 2000, Journal of Fluid Mechanics.

[7]  Hans J. W. Spoelder,et al.  Visualization of time-dependent data with feature tracking and event detection , 2001, The Visual Computer.

[8]  Hans Hagen,et al.  Exploring scalar fields using critical isovalues , 2002, IEEE Visualization, 2002. VIS 2002..

[9]  Hans Hagen,et al.  Topology tracking for the visualization of time-dependent two-dimensional flows , 2002, Comput. Graph..

[10]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[11]  Rephael Wenger,et al.  Volume Tracking Using Higher Dimensional Isocontouring , 2003, IEEE Visualization.

[12]  Martin Isenburg,et al.  Large mesh simplification using processing sequences , 2003, IEEE Visualization, 2003. VIS 2003..

[13]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[14]  Timothy T. Clark,et al.  A numerical study of the statistics of a two-dimensional Rayleigh–Taylor mixing layer , 2003 .

[15]  Jack Snoeyink,et al.  Simplifying flexible isosurfaces using local geometric measures , 2004, IEEE Visualization 2004.

[16]  Valerio Pascucci,et al.  Time-varying reeb graphs for continuous space-time data , 2004, SCG '04.

[17]  Andrew W. Cook,et al.  The mixing transition in Rayleigh–Taylor instability , 2004, Journal of Fluid Mechanics.

[18]  Xavier Tricoche,et al.  Tracking of vector field singularities in unstructured 3D time-dependent datasets , 2004, IEEE Visualization 2004.

[19]  Bernd Hamann,et al.  A topological hierarchy for functions on triangulated surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[20]  Han-Wei Shen,et al.  Efficient isosurface tracking using precomputed correspondence table , 2004, VISSYM'04.

[21]  Hans-Peter Seidel,et al.  Extracting higher order critical points and topological simplification of 3D vector fields , 2005, VIS 05. IEEE Visualization, 2005..

[22]  Bernd Hamann,et al.  Topology-based simplification for feature extraction from 3D scalar fields , 2005, VIS 05. IEEE Visualization, 2005..

[23]  Xavier Tricoche,et al.  Topological Methods for Flow Visualization , 2005, The Visualization Handbook.

[24]  Chandrajit L. Bajaj,et al.  Time-varying contour topology , 2006, IEEE Transactions on Visualization and Computer Graphics.