A Metrized Duality Theorem for Markov Processes

We extend our previous duality theorem for Markov processes by equipping the processes with a pseudometric and the algebras with a notion of metric diameter. We are able to show that the isomorphisms of our previous duality theorem become isometries in this quantitative setting. This opens the way to developing theories of approximate reasoning for probabilistic systems.

[1]  E. Doberkat Stochastic Relations , 2007 .

[2]  Abbas Edalat,et al.  A logical characterization of bisimulation for labeled Markov processes , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[3]  Kim G. Larsen,et al.  Continuous Markovian Logics - Axiomatization and Quantified Metatheory , 2012, Log. Methods Comput. Sci..

[4]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.

[5]  Radha Jagadeesan,et al.  Metrics for labelled Markov processes , 2004, Theor. Comput. Sci..

[6]  E. Doberkat Stochastic Relations : Foundations for Markov Transition Systems , 2007 .

[7]  James Worrell,et al.  Towards Quantitative Verification of Probabilistic Transition Systems , 2001, ICALP.

[8]  Gordon D. Plotkin,et al.  Dijkstras Predicate Transformers & Smyth's Power Domaine , 1979, Abstract Software Specifications.

[9]  Robert MullerAugust,et al.  Le ture Notes on Domain Theory , 2007 .

[10]  Robert Goldblatt,et al.  Deduction Systems for Coalgebras Over Measurable Spaces , 2010, J. Log. Comput..

[11]  Radha Jagadeesan,et al.  Metrics for Labeled Markov Systems , 1999, CONCUR.

[12]  Michael B. Smyth,et al.  Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[13]  Robert J. Aumann,et al.  Interactive epistemology II: Probability , 1999, Int. J. Game Theory.

[14]  Marcello M. Bonsangue,et al.  Duality for Logics of Transition Systems , 2005, FoSSaCS.

[15]  Chunlai Zhou,et al.  A Complete Deductive System for Probability Logic , 2009, J. Log. Comput..

[16]  James Worrell,et al.  An Algorithm for Quantitative Verification of Probabilistic Transition Systems , 2001, CONCUR.

[17]  Prakash Panangaden,et al.  Labelled Markov Processes , 2009 .

[18]  Dexter Kozen,et al.  A probabilistic PDL , 1983, J. Comput. Syst. Sci..

[19]  Kim G. Larsen,et al.  Taking It to the Limit: Approximate Reasoning for Markov Processes , 2012, MFCS.

[20]  Abbas Edalat,et al.  Bisimulation for Labelled Markov Processes , 2002, Inf. Comput..

[21]  Joël Ouaknine,et al.  Duality for Labelled Markov Processes , 2004, FoSSaCS.

[22]  Aviad Heifetz,et al.  Probability Logic for Type Spaces , 2001, Games Econ. Behav..

[23]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[24]  Kim G. Larsen,et al.  Continuous Markovian Logic - From Complete Axiomatization to the Metric Space of Formulas , 2011, CSL.

[25]  Ronald Fagin,et al.  Reasoning about knowledge and probability , 1988, JACM.

[26]  Kim G. Larsen,et al.  Stone Duality for Markov Processes , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.