Simultaneous test for linear model via projection

In this paper, we focus on the simultaneous test for the high-dimensional linear model coefficient. In high-dimensional setting, the traditional F-test is infeasible while the dimension is larger t...

[1]  Runze Li,et al.  Feature Screening via Distance Correlation Learning , 2012, Journal of the American Statistical Association.

[2]  James R. Schott,et al.  Testing for complete independence in high dimensions , 2005 .

[3]  Muni S. Srivastava,et al.  A two sample test in high dimensional data , 2013, Journal of Multivariate Analysis.

[4]  Changliang Zou,et al.  Multivariate sign-based high-dimensional tests for sphericity , 2014 .

[5]  Adel Javanmard,et al.  Confidence intervals and hypothesis testing for high-dimensional regression , 2013, J. Mach. Learn. Res..

[6]  W Y Zhang,et al.  Discussion on `Sure independence screening for ultra-high dimensional feature space' by Fan, J and Lv, J. , 2008 .

[7]  Jianqing Fan,et al.  Sure independence screening in generalized linear models with NP-dimensionality , 2009, The Annals of Statistics.

[8]  Song-xi Chen,et al.  Tests for High-Dimensional Covariance Matrices , 2010, Random Matrices: Theory and Applications.

[9]  David Ruppert,et al.  RAPTT: An Exact Two-Sample Test in High Dimensions Using Random Projections , 2014, 1405.1792.

[10]  M. Srivastava,et al.  A test for the mean vector with fewer observations than the dimension , 2008 .

[11]  R. Tibshirani,et al.  On testing the significance of sets of genes , 2006, math/0610667.

[12]  Song-xi Chen,et al.  Tests for High-Dimensional Regression Coefficients With Factorial Designs , 2011 .

[13]  Fugee Tsung,et al.  A spatial rank‐based multivariate EWMA control chart , 2012 .

[14]  Runze Li,et al.  A High-Dimensional Nonparametric Multivariate Test for Mean Vector , 2015, Journal of the American Statistical Association.

[15]  Peter Bühlmann,et al.  p-Values for High-Dimensional Regression , 2008, 0811.2177.

[16]  S. Geer,et al.  On asymptotically optimal confidence regions and tests for high-dimensional models , 2013, 1303.0518.

[17]  B. K. Ghosh,et al.  Some Monotonicity Theorems for χ2, F and T Distributions with Applications , 1973 .

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  Veerabhadran Baladandayuthapani,et al.  A Two-Sample Test for Equality of Means in High Dimension , 2015, Journal of the American Statistical Association.

[20]  Song-xi Chen,et al.  A two-sample test for high-dimensional data with applications to gene-set testing , 2010, 1002.4547.

[21]  Long Feng,et al.  Multivariate-Sign-Based High-Dimensional Tests for the Two-Sample Location Problem , 2016 .

[22]  L. Wasserman,et al.  HIGH DIMENSIONAL VARIABLE SELECTION. , 2007, Annals of statistics.

[23]  Sara van de Geer,et al.  Testing against a high dimensional alternative , 2006 .

[24]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[25]  Cun-Hui Zhang,et al.  Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.

[26]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[27]  P. Sen Asymptotic Efficiency of a Class of Aligned Rank Order Tests for Multiresponse Experiments in some Incomplete Block Designs , 1971 .