Historical forest biomass dynamics modelled with Landsat spectral trajectories

[1]  V. Kumar,et al.  Wavelet Based Post Classification Change Detection Technique for Urban Growth Monitoring , 2013, Journal of the Indian Society of Remote Sensing.

[2]  Joanne C. White,et al.  Characterizing 25 years of change in the area, distribution, and carbon stock of Mediterranean pines in Central Spain , 2012 .

[3]  Onisimo Mutanga,et al.  High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[4]  W. Cohen,et al.  Using Landsat-derived disturbance history (1972-2010) to predict current forest structure , 2012 .

[5]  Michael A. Wulder,et al.  Opening the archive: How free data has enabled the science and monitoring promise of Landsat , 2012 .

[6]  C. Woodcock,et al.  Continuous monitoring of forest disturbance using all available Landsat imagery , 2012 .

[7]  John L. Dwyer,et al.  Landsat: building a strong future , 2012 .

[8]  F. Bravo,et al.  Can we get an operational indicator of forest carbon sequestration?: A case study from two forest regions in Spain , 2012 .

[9]  Warren B. Cohen,et al.  Assessing the Carbon Consequences of Western Juniper (Juniperus occidentalis) Encroachment Across Oregon, USA , 2012 .

[10]  David Saah,et al.  Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates , 2012 .

[11]  M. Wulder,et al.  Forest structural diversity characterization in Mediterranean pines of central Spain with QuickBird-2 imagery and canonical correlation analysis , 2011 .

[12]  Guoqing Sun,et al.  Forest biomass mapping from lidar and radar synergies , 2011 .

[13]  Michael A. Wulder,et al.  Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation , 2011 .

[14]  Sandra Englhart,et al.  Aboveground biomass retrieval in tropical forests — The potential of combined X- and L-band SAR data use , 2011 .

[15]  Ricardo Ruiz-Peinado,et al.  New models for estimating the carbon sink capacity of Spanish softwood species , 2011 .

[16]  Zhiqiang Yang,et al.  Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms , 2010 .

[17]  Haydee Karszenbaum,et al.  Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina , 2010 .

[18]  Warren B. Cohen,et al.  Implications of Alternative Field-Sampling Designs on Landsat-Based Mapping of Stand Age and Carbon Stocks in Oregon Forests , 2010, Forest Science.

[19]  Ranga B. Myneni,et al.  Regional distribution of forest height and biomass from multisensor data fusion , 2010 .

[20]  Kenneth B. Pierce,et al.  Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches , 2010 .

[21]  Nicholas C. Coops,et al.  Curve fitting of time-series Landsat imagery for characterizing a mountain pine beetle infestation , 2010 .

[22]  Menas Kafatos,et al.  Estimating stem volume and biomass of Pinus koraiensis using LiDAR data , 2010, Journal of Plant Research.

[23]  Michael A. Wulder,et al.  Integration of GLAS and Landsat TM data for aboveground biomass estimation , 2010 .

[24]  I. Woodhouse,et al.  Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes , 2009 .

[25]  Tonny J. Oyana,et al.  Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images , 2009 .

[26]  M. Gilabert,et al.  Vegetation dynamics from NDVI time series analysis using the wavelet transform , 2009 .

[27]  Toni Giorgino,et al.  Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package , 2009 .

[28]  J. Vogelmann,et al.  Monitoring forest changes in the southwestern United States using multitemporal Landsat data , 2009 .

[29]  S. Goward,et al.  Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States , 2009 .

[30]  David B. Lindenmayer,et al.  Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests , 2009, Proceedings of the National Academy of Sciences.

[31]  S. Goetz,et al.  Mapping and monitoring carbon stocks with satellite observations: a comparison of methods , 2009, Carbon balance and management.

[32]  Tom P. Evans,et al.  National forest carbon inventories: policy needs and assessment capacity , 2009 .

[33]  Fernando Pérez-Cabello,et al.  Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images , 2008 .

[34]  Antonio Vázquez de la Cueva,et al.  Structural attributes of three forest types in central Spain and Landsat ETM+ information evaluated with redundancy analysis , 2008 .

[35]  W. Liu,et al.  Predicting forest successional stages using multitemporal Landsat imagery with forest inventory and analysis data , 2008 .

[36]  E. Næsset,et al.  Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser , 2008 .

[37]  Piermaria Corona,et al.  Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems , 2008 .

[38]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[39]  Richard A. Fournier,et al.  Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS , 2008, Sensors.

[40]  R. Houghton,et al.  Mapping Russian forest biomass with data from satellites and forest inventories , 2007 .

[41]  C. Woodcock,et al.  Scaling Field Data to Calibrate and Validate Moderate Spatial Resolution Remote Sensing Models , 2007 .

[42]  Warren B. Cohen,et al.  Patterns of forest regrowth following clearcutting in western Oregon as determined from a Landsat time-series , 2007 .

[43]  J. Heiskanen,et al.  Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories , 2007 .

[44]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[45]  Shilong Piao,et al.  Satellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999 , 2007 .

[46]  André Faaij,et al.  Bioenergy potentials from forestry in 2050 , 2007 .

[47]  W. Cohen,et al.  Predicting temperate conifer forest successional stage distributions with multitemporal Landsat Thematic Mapper imagery , 2007 .

[48]  S. Merino-de-Miguel,et al.  Forest biomass estimation through NDVI composites. The role of remotely sensed data to assess Spanish forests as carbon sinks , 2006 .

[49]  R. Fournier,et al.  A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland , 2006 .

[50]  R. Hall,et al.  Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume , 2006 .

[51]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[52]  Sean P. Healey,et al.  Application of two regression-based methods to estimate the effects of partial harvest on forest structure using Landsat data , 2006 .

[53]  Randolph H. Wynne,et al.  Estimating forest biomass using small footprint LiDAR data: An individual tree-based approach that incorporates training data , 2005 .

[54]  Piermaria Corona,et al.  Estimation of Mediterranean forest attributes by the application of k‐NN procedures to multitemporal Landsat ETM+ images , 2005 .

[55]  Shilong Piao,et al.  Forest biomass carbon stocks in China over the past 2 decades: Estimation based on integrated inventory and satellite data , 2005 .

[56]  M. Batistella,et al.  Satellite estimation of aboveground biomass and impacts of forest stand structure , 2005 .

[57]  T. Sakamoto,et al.  A crop phenology detection method using time-series MODIS data , 2005 .

[58]  D. Lu Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon , 2005 .

[59]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[60]  Barbara Koch,et al.  An efficient regression strategy for extracting forest biomass information from satellite sensor data , 2005 .

[61]  Suming Jin,et al.  Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances , 2005 .

[62]  Eamonn J. Keogh,et al.  Three Myths about Dynamic Time Warping Data Mining , 2005, SDM.

[63]  Warren B. Cohen,et al.  Carbon Stores, Sinks, and Sources in Forests of Northwestern Russia: Can We Reconcile Forest Inventories with Remote Sensing Results? , 2004 .

[64]  G. Montero,et al.  Fijación de CO2 por Pinus sylvestris L. y Quercus pyrenaica Willd. en los montes "Pinar de Valsaín" y "Matas de Valsaín" , 2004 .

[65]  M. Canty,et al.  Automatic radiometric normalization of multitemporal satellite imagery , 2004 .

[66]  Donald B. Percival,et al.  An introduction to wavelet analysis with applications to vegetation time series , 2004 .

[67]  D. Lu,et al.  Change detection techniques , 2004 .

[68]  C. Woodcock,et al.  Forest biomass estimation over regional scales using multisource data , 2004 .

[69]  J. Barlow,et al.  Ecological responses to el Niño-induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[70]  J. Terborgh,et al.  Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[71]  Jiang Li,et al.  Correction to "Wavelet-Based Feature Extraction for Improved Endmember Abundance Estimation in Linear Unmixing of Hyperspectral Signals" , 2004 .

[72]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[73]  Ranga B. Myneni,et al.  Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks , 2003 .

[74]  C. Woodcock,et al.  The spectral/temporal manifestation of forest succession in optical imagery: The potential of multitemporal imagery , 2002 .

[75]  Yong Du,et al.  Haze detection and removal in high resolution satellite image with wavelet analysis , 2002, IEEE Trans. Geosci. Remote. Sens..

[76]  Fraser Gemmell,et al.  Estimating forest cover in a boreal forest test site using thematic mapper data from two dates , 2001 .

[77]  Giles M. Foody,et al.  Mapping the biomass of Bornean tropical rain forest from remotely sensed data , 2001 .

[78]  George M. Church,et al.  Aligning gene expression time series with time warping algorithms , 2001, Bioinform..

[79]  Andreas Niedermeier,et al.  Detection of coastlines in SAR images using wavelet methods , 2000, IEEE Trans. Geosci. Remote. Sens..

[80]  M. Nilsson,et al.  Regional forest biomass and wood volume estimation using satellite data and ancillary data , 1999 .

[81]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[82]  Seisuke Fukuda,et al.  A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images , 1999, IEEE Trans. Geosci. Remote. Sens..

[83]  I. Daubechies,et al.  Wavelets on irregular point sets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[84]  Fraser Gemmell,et al.  Estimating Conifer Forest Cover with Thematic Mapper Data Using Reflectance Model Inversion and Two Spectral Indices in a Site with Variable Background Characteristics , 1999 .

[85]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[86]  Fraser Gemmell,et al.  An Investigation of Terrain Effects on the Inversion of a Forest Reflectance Model , 1998 .

[87]  Xavier Pons,et al.  On the applicability of Landsat TM images to Mediterranean forest inventories , 1998 .

[88]  S. S. Iyengar,et al.  Wavelet-based feature extraction from oceanographic images , 1998, IEEE Trans. Geosci. Remote. Sens..

[89]  Yaqiu Jin,et al.  Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks , 1997 .

[90]  Donald B. Percival,et al.  The discrete wavelet transform and the scale analysis of the surface properties of sea ice , 1996, IEEE Trans. Geosci. Remote. Sens..

[91]  R. Lucas,et al.  Identifying terrestrial carbon sinks: Classification of successional stages in regenerating tropical forest from Landsat TM data , 1996 .

[92]  W. Cohen,et al.  Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. , 1995 .

[93]  F. Gemmell,et al.  Effects of forest cover, terrain, and scale on timber volume estimation with Thematic Mapper data in a rocky mountain site , 1995 .

[94]  J. O'Brien,et al.  An Introduction to Wavelet Analysis in Oceanography and Meteorology: With Application to the Dispersion of Yanai Waves , 1993 .

[95]  Tiit Nilson,et al.  Successional reflectance trajectories in northern temperate forests , 1993 .

[96]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[97]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[98]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[99]  N. G. Zagoruyko,et al.  Automatic recognition of 200 words , 1970 .

[100]  S. Jesus,et al.  A European map of living forest biomass and carbon stock - Executive report , 2012 .

[101]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[102]  Servicio de Publicaciones. Uco Servicio de Publicaciones , 2009 .

[103]  Yosio Edemir Shimabukuro,et al.  Combining wavelets and linear spectral mixture model for MODIS satellite sensor time-series analysis , 2008 .

[104]  W. Kurz,et al.  Developing Canada's National Forest Carbon Monitoring, Accounting and Reporting System to Meet the Reporting Requirements of the Kyoto Protocol , 2006 .

[105]  F. Wagner,et al.  Good Practice Guidance for Land Use, Land-Use Change and Forestry , 2003 .

[106]  W. Cohen,et al.  An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon , 2001 .

[107]  Arno Schäpe,et al.  Multiresolution Segmentation : an optimization approach for high quality multi-scale image segmentation , 2000 .

[108]  J. Zhou,et al.  A wavelet transform method to merge Landsat TM and SPOT panchromatic data , 1998 .

[109]  J. Chassery,et al.  The use of multiresolution analysis and wavelets transform for merging SPOT panchromatic and multisp , 1996 .

[110]  Franz Friedrich Paul Kollmann,et al.  Tecnología de la madera y sus aplicaciones , 1959 .

[111]  J. Liskia,et al.  Trees as carbon sinks and sources in the European Union , 2022 .