On the number and the distribution of the nash equilibria in supermodular games and their impact on the tipping set
暂无分享,去创建一个
[1] Lin Zhou,et al. The Set of Nash Equilibria of a Supermodular Game Is a Complete Lattice , 1994 .
[2] D. M. Topkis. Supermodularity and Complementarity , 1998 .
[3] H. Kunreuther,et al. Interdependent Security , 2003 .
[4] M. Dufwenberg. Game theory. , 2011, Wiley interdisciplinary reviews. Cognitive science.
[5] Paul R. Milgrom,et al. Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities , 1990 .
[6] Avinash Dixit,et al. Clubs with Entrapment , 2003 .
[7] X. Vives. Nash equilibrium with strategic complementarities , 1990 .
[8] T. Schelling. Micromotives and Macrobehavior , 1978 .
[9] Andrew McLennan,et al. The Maximal Generic Number of Pure Nash Equilibria , 1997 .
[10] H. Kunreuther,et al. IDS Models of Airline Security , 2005 .
[11] M. Gladwell,et al. The Tipping Point , 2011 .
[12] Howard Kunreuther,et al. Supermodularity and Tipping , 2006 .
[13] X. Vives. Complementarities and Games: New Developments , 2004 .
[14] Donald M. Topkis,et al. Minimizing a Submodular Function on a Lattice , 1978, Oper. Res..
[15] H. Kunreuther,et al. Social Reinforcement: Cascades, Entrapment and Tipping , 2007 .
[16] D. M. Topkis. Equilibrium Points in Nonzero-Sum n-Person Submodular Games , 1979 .