An ICT Architecture for Managed Charging of Electric Vehicles in Smart Grid Environments

Growing shortage of fossil resources and an increasing demand of individual mobility worldwide require technology alternatives to existing mobility solutions. Electric vehicles (EVs) as one possible solution have moved into the focus of research and development. To maximize the positive environmental effect of EVs, it is proposed to charge them with respect to the availability of renewable energies. As the number of EVs will grow in the near future, their impact on the power distribution grid is no longer neglectable. Related research shows that unmanaged charging of EVs could result in overload situations or voltage instabilities. To overcome this, methods are proposed to manage the charging process holistically. Herein EVs become substantial elements of intelligent power grids (Smart Grids). As of today, research in the area of Smart Grids focuses mainly on either energy aspects or communication aspects while neglecting the interoperability of energy and communication related aspects. In this paper, an insight into Information and Communication Technology (ICT) aspects with respect to Managed Charging of EVs in Smart Grid environments will be given. Based on the use case of Managed Charging, requirements will be analyzed, results will be derived, and ICT solutions will be proposed with a set of recommendations for Smart Grid architectures.

[1]  Marian Klobasa,et al.  Dynamische Simulation eines Lastmanagements und Integration von Windenergie in ein Elektrizitätsnetz auf Landesebene unter regelungstechnischen und Kostengesichtspunkten , 2007 .

[2]  J. Dargay,et al.  Vehicle Ownership and Income Growth, Worldwide: 1960-2030 , 2007 .

[3]  D. Sperling,et al.  Two Billion Cars: Driving Toward Sustainability , 2008 .

[4]  D. Fischer,et al.  Developing a communication infrastructure for the Smart Grid , 2009, 2009 IEEE Electrical Power & Energy Conference (EPEC).

[5]  Pramode K. Verma,et al.  A proposed communications infrastructure for the smart grid , 2010, 2010 Innovative Smart Grid Technologies (ISGT).

[6]  M. Erol-Kantarci,et al.  The impact of smart grid residential energy management schemes on the carbon footprint of the household electricity consumption , 2010, 2010 IEEE Electrical Power & Energy Conference.

[7]  Yi Zhou,et al.  Charging of electric vehicles and impact on the grid , 2010, 13th Mechatronika 2010.

[8]  Dirk Westermann,et al.  Utilizing battery electric and plug-in hybrids for smart grid operation techniques , 2011, 2011 IEEE Power and Energy Society General Meeting.

[9]  Matthias Stifter,et al.  "Augen im Netz": Neue Wege der Analyse elektrischer Niederspannungsnetze , 2011, Elektrotech. Informationstechnik.

[10]  Oliver Weinmann,et al.  Verbundprojekt: Klimaentlastung durch den Einsatz erneuerbarer Energien im Zusammenwirken mit emissionsfreien Elektrofahrzeugen - MINI E 1.0 : MINI E Berlin powered by Vattenfall ; Berichtszeitraum: 01.12.2008 - 30.11.2010 , 2011 .

[11]  M. Agsten Einfluss gesteuerten Ladens von Elektrofahrzeugen auf die Netzbetriebsführung bei volatiler Windeinspeisung , 2011 .

[12]  Michael Agsten,et al.  Lastmanagementpotential Elektrofahrzeuge Load Management Potential of Electric Vehicles , 2011 .

[13]  Michael Agsten,et al.  Einfluss Gesteuerten Ladens von Elektrofahrzeugen auf Verteilnetze bei volatiler Windeinspeisung , 2012, Autom..

[14]  Anne Marsden,et al.  International Organization for Standardization , 2014 .