On the flow of a simple fluid in an orthogonal rheometer

[1]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[2]  R. Huilgol A class of motions with constant stretch history , 1971 .

[3]  K. Walters,et al.  Rheometrical flow systems Part 2. Theory for the orthogonal rheometer, including an exact solution of the Navier-Stokes equations , 1970, Journal of Fluid Mechanics.

[4]  R. Huilgol On the Properties of the Motion With Constant Stretch History Occurring in the Maxwell Rheometer , 1969 .

[5]  R. Bird,et al.  Analysis of steady state shearing and stress relaxation in the Maxwell orthogonal rheometer , 1968 .

[6]  Bryce Maxwell,et al.  Studies of a Polymer Melt in an Orthogonal Rheometer , 1965 .

[7]  B. D. Coleman Substantially Stagnant Motions , 1962 .

[8]  R. Berker An exact solution of the navier-stokes equation the vortex with curvilinear axis☆ , 1982 .

[9]  K. Rajagopal,et al.  Flow and stability of a second grade fluid between two parallel plates rotating about noncoincident axes , 1981 .

[10]  Kumbakonam R. Rajagopal,et al.  The flow of a second order fluid between rotating parallel plates , 1981 .

[11]  R. Berker A new solution of the Navier-Stokes equation for the motion of a fluid contained between two parallel plates rotating about the same axis , 1979 .

[12]  E. Kearsley On the flow induced by a Maxwell-Chartoff rheometer , 1970 .

[13]  S. J. Kurtz,et al.  Analysis of the Maxwell orthogonal rheometer , 1967 .

[14]  C. Wang A representation theorem for the constitutive equation of a simple material in motions with constant stretch history , 1965 .

[15]  B. D. Coleman Kinematical concepts with applications in the mechanics and thermodynamics of incompressible viscoelastic fluids , 1962 .

[16]  W. Noll Motions with constant stretch history , 1962 .

[17]  R. Rivlin,et al.  Stress-Deformation Relations for Isotropic Materials , 1955 .

[18]  Ratip Berker Sur quelques cas d'integration des équations du mouvement d'un fluide visqueux incompressible , 1936 .