PRELIMINARY RESULTS OF A MULTI-AGENT TRAFFIC SIMULATION FOR BERLIN

This paper provides an introduction to multi-agent traffic simulation. Metropolitan regions can consist of several million inhabitants, implying the simulation of several million travelers, which represents a considerable computational challenge. We reports on our recent case study of a real-world Berlin scenario. The paper explains computational techniques necessary to achieve results. It turns out that the difficulties there, because of data availability and because of the special situation of Berlin after the reunification, are considerably larger than in previous scenarios that we have treated.

[1]  Kay W. Axhausen,et al.  planomat: a comprehensive scheduler for a large-scale multi-agent transportation simulation , 2006 .

[2]  B. Kerner EXPERIMENTAL FEATURES OF SELF-ORGANIZATION IN TRAFFIC FLOW , 1998 .

[3]  H. Schuster Deterministic chaos: An introduction , 1984 .

[4]  Matthew J. Roorda,et al.  Prototype Model of Household Activity-Travel Scheduling , 2003 .

[5]  Alan Borning,et al.  Microsimulation of Urban Development and Location Choices: Design and Implementation of UrbanSim , 2003 .

[6]  Dietrich Stauffer,et al.  Anual Reviews of Computational Physics VII , 1994 .

[7]  C. Gawron,et al.  An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model , 1998 .

[8]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  A. Schadschneider,et al.  Statistical physics of vehicular traffic and some related systems , 2000, cond-mat/0007053.

[10]  M. D. McKay,et al.  Creating synthetic baseline populations , 1996 .

[11]  Nakayama,et al.  Dynamical model of traffic congestion and numerical simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Ta Theo Arentze,et al.  Experiences with developing ALBATROSS: a learning-based transportation oriented simulation system , 1998 .

[13]  Gunnar Flötteröd,et al.  Some practical extensions to the cell transmission model , 2005 .

[14]  Joel Freedman,et al.  Development of Microsimulation Activity-Based Model for San Francisco: Destination and Mode Choice Models , 2001 .

[15]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[16]  D. Helbing,et al.  Phase diagram of tra c states in the presence of inhomogeneities , 1998, cond-mat/9809324.

[17]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[18]  P Nelson,et al.  A critical comparison of the kinematic-wave model with observation data , 2005 .

[19]  M. Ben-Akiva,et al.  DEMONSTRATION OF AN ACTIVITY-BASED MODEL FOR PORTLAND , 1999 .

[20]  Kai Nagel,et al.  Probabilistic Traffic Flow Breakdown in Stochastic Car-Following Models , 2002, cond-mat/0208082.

[21]  Kai Nagel,et al.  Parallel implementation of the TRANSIMS micro-simulation , 2001, Parallel Comput..

[22]  Michel Bierlaire,et al.  DynaMIT: a simulation-based system for traffic prediction and guidance generation , 1998 .

[23]  Georg Hertkorn,et al.  Neue Ansätze zu einer mikroskopisch-dynamischen Verkehrs- und Flächennutzungsplanung im Verbundprojekt ILUMASS , 2002 .

[24]  M. Ben-Akiva,et al.  Discrete choice analysis , 1989 .

[25]  Gawron,et al.  Continuous limit of the Nagel-Schreckenberg model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Boris S. Kerner,et al.  Cellular automata approach to three-phase traffic theory , 2002, cond-mat/0206370.

[27]  David Charypar,et al.  Q-Learning for Flexible Learning of Daily Activity Plans , 2005 .

[28]  M. Lighthill,et al.  On kinematic waves I. Flood movement in long rivers , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  Dietrich Stauffer,et al.  Computer simulations of cellular automata , 1991 .

[30]  P. Tamayo,et al.  Parallel Algorithms for Short-range Molecular Dynamics , 1995 .

[31]  A. Palma,et al.  A STRUCTURAL MODEL OF PEAK-PERIOD CONGESTION: A TRAFFIC BOTTLENECK WITH ELASTIC DEMAND. IN: RECENT DEVELOPMENTS IN TRANSPORT ECONOMICS , 1993 .

[32]  Peter Wagner,et al.  Toward Benchmarking of Microscopic Traffic Flow Models , 2003 .

[33]  P. G. Gipps,et al.  A behavioural car-following model for computer simulation , 1981 .

[34]  M J Lighthill,et al.  ON KINEMATIC WAVES.. , 1955 .

[35]  S. Jara-Díaz,et al.  Modeling activity duration and travel choice from a co m- mon microeconomic framework , 2003 .

[36]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[37]  Satoshi Fujii,et al.  FAMOS: The Florida activity mobility simulator , 2005 .

[38]  Eric J. Miller,et al.  ILUTE: An Operational Prototype of a Comprehensive Microsimulation Model of Urban Systems , 2005 .

[39]  K. Nagel,et al.  Generating complete all-day activity plans with genetic algorithms , 2005 .

[40]  Gunnar Flötteröd,et al.  Modeling and Estimation of Combined Route and Activity Location Choice , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[41]  Fabrice Marchal,et al.  Real Cases Applications of the Fully Dynamic METROPOLIS Tool-Box: An Advocacy for Large-Scale Mesoscopic Transportation Systems , 2002 .

[42]  Chandra R. Bhat,et al.  Comprehensive Econometric Microsimulator for Daily Activity-Travel Patterns , 2004 .

[43]  Y. Sugiyama,et al.  Phenomenological Study of Dynamical Model of Traffic Flow , 1995 .

[44]  Fred L. Hall,et al.  FREEWAY CAPACITY DROP AND THE DEFINITION OF CAPACITY , 1991 .

[45]  Hani S. Mahmassani,et al.  MACROPARTICLE TRAFFIC SIMULATION MODEL TO INVESTIGATE PEAK-PERIOD COMMUTER DECISION DYNAMICS. , 1985 .