Object tracking: A survey

The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

[1]  Larry H. Matthies,et al.  Kalman filter-based algorithms for estimating depth from image sequences , 1989, International Journal of Computer Vision.

[2]  Edward H. Adelson,et al.  Representing moving images with layers , 1994, IEEE Trans. Image Process..

[3]  G. Kitagawa,et al.  Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[4]  Daniel Cremers,et al.  Statistical shape knowledge in variational motion segmentation , 2003, Image Vis. Comput..

[5]  C. Gouriéroux,et al.  Non-Gaussian State-Space Modeling of Nonstationary Time Series , 2008 .

[6]  Takeo Kanade,et al.  A multi-body factorization method for motion analysis , 1995, Proceedings of IEEE International Conference on Computer Vision.

[7]  David J. Fleet,et al.  Performance of optical flow techniques , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Gérard G. Medioni,et al.  Object reacquisition using invariant appearance model , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[9]  Mubarak Shah,et al.  A non-iterative greedy algorithm for multi-frame point correspondence , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[10]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[11]  Jianbo Shi,et al.  Segmentation given partial grouping constraints , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Dorin Comaniciu,et al.  Bayesian Kernel Tracking , 2002, DAGM-Symposium.

[13]  K. G. Murty An Algorithm for Ranking All the Assignment in Order of Increasing Cost , 1968 .

[14]  Feng Wu,et al.  Very Fast Template Matching , 2002, ECCV.

[15]  Patrick Pérez,et al.  Sequential Monte Carlo methods for multiple target tracking and data fusion , 2002, IEEE Trans. Signal Process..

[16]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[19]  Joachim M. Buhmann,et al.  Topology free hidden Markov models: application to background modeling , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[20]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Luc Van Gool,et al.  Probabilistic object tracking using multiple features , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[22]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[23]  Ramin Zabih,et al.  Bayesian multi-camera surveillance , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[24]  Jake K. Aggarwal,et al.  A hierarchical Bayesian network for event recognition of human actions and interactions , 2004, Multimedia Systems.

[25]  Guillermo Sapiro,et al.  Morphing Active Contours , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[27]  B. G. Schunck The image flow constraint equation , 1986 .

[28]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[30]  Pietro Perona,et al.  Overcomplete steerable pyramid filters and rotation invariance , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Katta G. Murty,et al.  Letter to the Editor - An Algorithm for Ranking all the Assignments in Order of Increasing Cost , 1968, Oper. Res..

[32]  Xin Li,et al.  Contour-based object tracking with occlusion handling in video acquired using mobile cameras , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Sean Dougherty,et al.  Edge detector evaluation using empirical ROC curves , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[34]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[35]  Rama Chellappa,et al.  Adaptive visual tracking and recognition using particle filters , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[36]  Hai Tao,et al.  Object Tracking with Bayesian Estimation of Dynamic Layer Representations , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[38]  Ishwar K. Sethi,et al.  Feature Point Correspondence in the Presence of Occlusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[41]  Liyuan Li,et al.  Integrating intensity and texture differences for robust change detection , 2002, IEEE Trans. Image Process..

[42]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[43]  David J. Fleet,et al.  Robust online appearance models for visual tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[44]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[45]  Gérard G. Medioni,et al.  Continuous tracking within and across camera streams , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[46]  Andrew Blake,et al.  Statistical mosaics for tracking , 1996, Image Vis. Comput..

[47]  James M. Rehg,et al.  A multiple hypothesis approach to figure tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[48]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[49]  Daniel P. Huttenlocher,et al.  Tracking non-rigid objects in complex scenes , 1993, 1993 (4th) International Conference on Computer Vision.

[50]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[52]  Xavier Binefa,et al.  Robust Real-Time Periodic Motion Detection, Analysis, and Applications , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  P. Anandan,et al.  A unified approach to moving object detection in 2D and 3D scenes , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[54]  Jake K. Aggarwal,et al.  Temporal spatio-velocity transform and its application to tracking and interaction , 2004, Comput. Vis. Image Underst..

[55]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Morris Goldberg,et al.  Hierarchy in Picture Segmentation: A Stepwise Optimization Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Tobias Scheffer,et al.  Using Transduction and Multi-view Learning to Answer Emails , 2003, PKDD.

[58]  Takeo Kanade,et al.  Advances in Cooperative Multi-Sensor Video Surveillance , 1999 .

[59]  David Beymer,et al.  Real-Time Tracking of Multiple People Using Continuous Detection , 1999 .

[60]  Jake K. Aggarwal,et al.  Human motion analysis: a review , 1997, Proceedings IEEE Nonrigid and Articulated Motion Workshop.

[61]  Helman Stern,et al.  Adaptive color space switching for face tracking in multi-colored lighting environments , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[62]  Ingemar J. Cox,et al.  A review of statistical data association techniques for motion correspondence , 1993, International Journal of Computer Vision.

[63]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[64]  J. K. Aggarwal,et al.  3D structure reconstruction from an ego motion sequence using statistical estimation and detection theory , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[65]  Lorenzo Torresani,et al.  Space-Time Tracking , 2002, ECCV.

[66]  Lily Lee,et al.  Monitoring Activities from Multiple Video Streams: Establishing a Common Coordinate Frame , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  L. Davis,et al.  M2Tracker: A Multi-View Approach to Segmenting and Tracking People in a Cluttered Scene , 2003, International Journal of Computer Vision.

[68]  Stanley T. Birchfield,et al.  Elliptical head tracking using intensity gradients and color histograms , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[69]  A. Baddeley Errors in binary images and an $Lsp p$ version of the Hausdorff metric , 1992 .

[70]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[71]  Paul A. Viola,et al.  Unsupervised improvement of visual detectors using cotraining , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[72]  René Vidal,et al.  A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation , 2004, ECCV.

[73]  Mubarak Shah,et al.  Consistent Labeling of Tracked Objects in Multiple Cameras with Overlapping Fields of View , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  共立出版株式会社 コンピュータ・サイエンス : ACM computing surveys , 1978 .

[75]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[76]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[77]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[79]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[80]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[81]  Roy L. Streit,et al.  Maximum likelihood method for probabilistic multihypothesis tracking , 1994, Defense, Security, and Sensing.

[82]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[84]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[85]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[86]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[87]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[88]  Jake K. Aggarwal,et al.  Tracking Human Motion in Structured Environments Using a Distributed-Camera System , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[90]  Daniel Cremers,et al.  Nonlinear Shape Statistics in Mumford-Shah Based Segmentation , 2002, ECCV.

[91]  Mubarak Shah,et al.  Tracking across multiple cameras with disjoint views , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[92]  Shai Avidan,et al.  Support vector tracking , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  Jake K. Aggarwal,et al.  Segmentation and recognition of continuous human activity , 2001, Proceedings IEEE Workshop on Detection and Recognition of Events in Video.

[94]  Andrew Blake,et al.  A Probabilistic Background Model for Tracking , 2000, ECCV.

[95]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[96]  Michael Isard,et al.  Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion , 2000 .

[97]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[98]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[99]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[100]  Keith Baker,et al.  5th Alvey vision Conference , 1990, Image Vis. Comput..

[101]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[102]  A. M. Tekalp,et al.  Multiple camera tracking of interacting and occluded human motion , 2001, Proc. IEEE.

[103]  Cor J. Veenman,et al.  Resolving Motion Correspondence for Densely Moving Points , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[104]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[106]  Y. Bar-Shalom Tracking and data association , 1988 .

[107]  Ramesh C. Jain,et al.  On the Analysis of Accumulative Difference Pictures from Image Sequences of Real World Scenes , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[108]  Mubarak Shah,et al.  Target tracking in airborne forward looking infrared imagery , 2003, Image Vis. Comput..

[109]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[110]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[111]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[112]  Takeo Kanade,et al.  Neural network-based face detection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[113]  Stuart J. Russell,et al.  Object identification in a Bayesian context , 1997, IJCAI 1997.

[114]  Takeo Kanade,et al.  Algorithms for cooperative multisensor surveillance , 2001, Proc. IEEE.

[115]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[116]  Ishwar K. Sethi,et al.  Finding Trajectories of Feature Points in a Monocular Image Sequence , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  Thomas S. Huang,et al.  JPDAF based HMM for real-time contour tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[118]  Hans P. Moravec Visual Mapping by a Robot Rover , 1979, IJCAI.

[119]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[120]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[121]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[122]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[123]  Josef Kittler,et al.  Defect detection in random colour textures , 1996, Image Vis. Comput..

[124]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[125]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[126]  Richard Szeliski,et al.  Tracking with Kalman snakes , 1993 .

[127]  Timothy F. Cootes,et al.  Interpreting face images using active appearance models , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[128]  Ning Xu,et al.  Object contour tracking using graph cuts based active contours , 2002, Proceedings. International Conference on Image Processing.

[129]  C. W. Gear,et al.  Multibody Grouping from Motion Images , 1998, International Journal of Computer Vision.

[130]  Abdol-Reza Mansouri,et al.  Region Tracking via Level Set PDEs without Motion Computation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[131]  Georgios S. Paschos,et al.  Perceptually uniform color spaces for color texture analysis: an empirical evaluation , 2001, IEEE Trans. Image Process..

[132]  James W. Davis,et al.  Real-time closed-world tracking , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[133]  Rómer Rosales,et al.  3D trajectory recovery for tracking multiple objects and trajectory guided recognition of actions , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[134]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[135]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[136]  Paul W. Fieguth,et al.  Color-based tracking of heads and other mobile objects at video frame rates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[137]  Rama Chellappa,et al.  Model-based temporal object verification using video , 2001, IEEE Trans. Image Process..

[138]  R. Kimmel,et al.  Geodesic Active Contours , 1995, Proceedings of IEEE International Conference on Computer Vision.

[139]  Andrew Blake,et al.  A Probabilistic Exclusion Principle for Tracking Multiple Objects , 2000, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[140]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[141]  Rémi Ronfard,et al.  Region-based strategies for active contour models , 1994, International Journal of Computer Vision.

[142]  Michal Irani,et al.  Video indexing based on mosaic representations , 1998, Proc. IEEE.

[143]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[144]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[145]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[146]  Stan Sclaroff,et al.  Segmenting foreground objects from a dynamic textured background via a robust Kalman filter , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[147]  Martial Hebert,et al.  Discriminative random fields: a discriminative framework for contextual interaction in classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[148]  Henning Biermann,et al.  Recovering non-rigid 3D shape from image streams , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[149]  Xiang Gao,et al.  Error analysis of background adaption , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[150]  Paul A. Viola,et al.  Boosting Image Retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[151]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[152]  A. Murat Tekalp,et al.  On the Tracking of Articulated and Occluded Video Object Motion , 2001, Real Time Imaging.

[153]  Avinash C. Kak,et al.  Interactive Learning of a Multiple-Attribute Hash Table Classifier for Fast Object Recognition , 1995, Comput. Vis. Image Underst..

[154]  R. Collins,et al.  On-line selection of discriminative tracking features , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[155]  Mubarak Shah,et al.  Establishing motion correspondence , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[156]  D. Reid An algorithm for tracking multiple targets , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[157]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[158]  Takeo Kanade,et al.  A Multibody Factorization Method for Independently Moving Objects , 1998, International Journal of Computer Vision.

[159]  K. Laws Textured Image Segmentation , 1980 .

[160]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.