Discrete analytical Ridgelet transform
暂无分享,去创建一个
[1] Gabriele Steidl,et al. A new linogram algorithm for computerized tomography , 2001 .
[2] Jean-Pierre Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .
[3] D. Donoho. Wavelet Shrinkage and W.V.D.: A 10-minute tour , 1997 .
[4] P. Toft. The Radon Transform - Theory and Implementation , 1996 .
[5] Gabriele Steidl,et al. Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .
[6] D. Donoho,et al. Fast Slant Stack: a notion of Radon transform for data in a Cartesian grid which is rapidly computable, algebraically exact, geometrically faithful and invertible , 2003 .
[7] D. Donoho,et al. Translation-Invariant De-Noising , 1995 .
[8] Jack Bresenham,et al. Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..
[9] David L. Donoho,et al. Orthonormal Ridgelets and Linear Singularities , 2000, SIAM J. Math. Anal..
[10] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[11] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[12] Karsten Fourmont. Non-Equispaced Fast Fourier Transforms with Applications to Tomography , 2003 .
[13] Yoel Shkolnisky,et al. 3D discrete X-ray transform , 2004 .
[14] Martin L. Brady,et al. A Fast Discrete Approximation Algorithm for the Radon Transform , 1998, SIAM J. Comput..
[15] Eric Andres,et al. 3D fast ridgelet transform , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).
[16] Eric Andres,et al. Ridgelet Transform Based on Reveillès Discrete Lines , 2002, DGCI.
[17] J CandèsEmmanuel,et al. New multiscale transforms, minimum total variation synthesis , 2002 .
[18] A. Averbuch,et al. 3D Fourier based discrete Radon transform , 2003 .
[19] A. G. Flesia,et al. Digital Implementation of Ridgelet Packets , 2003 .
[20] Minh N. Do,et al. Discrete Ridgelet Transforms for Image Representation , 2001 .
[21] Eric Andres,et al. Discrete Analytical Hyperplanes , 1997, CVGIP Graph. Model. Image Process..
[22] M. Do. Directional multiresolution image representations , 2002 .
[23] E. Candès,et al. Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .
[24] A. G. Flesia,et al. Digital Ridgelet Transform Based on True Ridge Functions , 2003 .
[25] Emmanuel J. Candès,et al. The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).
[26] Jeffrey A. Fessler,et al. A min-max approach to the multidimensional nonuniform FFT: application to tomographic image reconstruction , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).
[27] G. MallatS.. A Theory for Multiresolution Signal Decomposition , 1989 .
[28] Emmanuel J. Candès,et al. New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..
[29] Eric Andres,et al. Discrete Ridgelet transform: application to the denoising of color images , 2002, CGIV.
[30] E. Kolaczyk. Wavelet Methods For The Inversion Of Certain Homogeneous Linear Operators In The Presence Of Noisy D , 1994 .
[31] Jan Flusser,et al. Image Representation Via a Finite Radon Transform , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[32] Jos B. T. M. Roerdink,et al. Data-parallel tomographic reconstruction: A comparison of filtered backprojection and direct Fourier reconstruction , 1998, Parallel Comput..