Nature of O2, CO, and CN binding to hemoprotein models

Parametrization of a molecular-mechanics program to include terms specific for five- and six-coordinate transition metal complexes results in computer-simulated structures of hemo complexes. The principal new feature peculiar to five- and six-coordination is a term that measures the effect of electron-pair repulsion modified by the ligand electronegativity and takes into account the different structural possibilities. The work consists in the modification of program molecular mechanics for penta and hexacoordination. The model system takes into account the structural differences of the fixing center in the hemoglobin subunits. The customary proximal histidine is added. The macrocycle hemo IX is wholly considered in our model. The calculations show clearly that certain conformations are much more favorable that others for fixing O2. From the O2 binding in hemoglobin and myoglobin and in simple Fe porphyrin models, it is concluded that the bent O2 ligand is best viewed as bound superoxide, O. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004

[1]  T. L. Hill,et al.  Steric Effects. I. Van der Waals Potential Energy Curves , 1948 .

[2]  Michele Parrinello,et al.  The Iron−Sulfur Bond in Cytochrome c , 1999 .

[3]  Teizo Kitagawa,et al.  THE PROXIMAL RESIDUE LARGELY DETERMINES THE CO DISTORTION IN CARBONMONOXY GLOBIN PROTEINS. AN AB INITIO STUDY OF A HEME PROSTHETIC UNIT , 1994 .

[4]  Feliu Maseras,et al.  Binding of dioxygen in a picket-fence porphyrin complex of iron. A theoretical QM/MM study , 1998 .

[5]  Christopher A. Reed,et al.  A deoxymyoglobin model with a sterically unhindered axial imidazole , 1988 .

[6]  Michael T. Green ROLE OF THE AXIAL LIGAND IN DETERMINING THE SPIN STATE OF RESTING CYTOCHROME P450 , 1998 .

[7]  A. Veillard,et al.  Structure and properties of a model of deoxyheme, an ab initio SCF calculation , 1983 .

[8]  Francisco Torrens,et al.  Polarization Force Fields for Peptides Implemented in ECEPP2 and MM2 , 2000 .

[9]  L. Bartell,et al.  Molecular structure of (CH3)3PF2: An electron diffraction study of an analogue of ArF2 , 1973 .

[10]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[11]  M. Rohmer Electronic ground state of iron(II)porphyrin. Ab initio SCF and CI calculations and computed electron deformation densities , 1985 .

[12]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[13]  Michele Parrinello,et al.  A density functional study of iron-porphyrin complexes , 1997 .

[14]  T. Spiro,et al.  Will the real FeCO please stand up? , 1997, JBIC Journal of Biological Inorganic Chemistry.

[15]  Jean-Didier Maréchal,et al.  Theoretical modeling of the heme group with a hybrid QM/MM method , 2000 .

[16]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[17]  K. Suslick,et al.  Models for the Active Site of Oxygen-Binding Hemoproteins. Dioxygen Binding Properties and the Structures of (2-Methylimidazole)-meso-tetra(α,α,α,α-o-Pivalamidophenyl)porphyrinatoiron(II)-Ethanol and Its Dioxygen Adduct , 1980 .

[18]  E. Oldfield,et al.  Carbonyl Complexes of Iron(II), Ruthenium(II), and Osmium(II) 5,10,15,20-Tetraphenylporphyrinates: A Comparative Investigation by X-ray Crystallography, Solid-State NMR Spectroscopy, and Density Functional Theory , 1998 .

[19]  E. Oldfield,et al.  Solid-State NMR, Crystallographic and Density Functional Theory Investigation of Fe−CO and Fe−CO Analogue Metalloporphyrins and Metalloproteins† , 1999 .

[20]  M. Perutz,et al.  Review Lecture - Stereochemical mechanism of oxygen transport by haemoglobin , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  T. Spiro,et al.  Discordant Results on FeCO Deformability in Heme Proteins Reconciled by Density Functional Theory , 1998 .

[22]  M. Halcrow,et al.  Biomimetic Chemistry of Nickel , 1994 .

[23]  James P. Collman,et al.  Structure of a dioxygen adduct of (1-methylimidazole)-meso-tetrakis(.alpha.,.alpha.,.alpha.,.alpha.,-o-pivalamidophenyl)porphinatoiron(II). An iron dioxygen model for the heme component of oxymyoglobin , 1978 .

[24]  J. Landrum,et al.  X-ray diffraction study of the electronic ground state of (meso-tetraphenylporphinato)iron(II) , 1990 .

[25]  Ivonne M. C. M. Rietjens,et al.  Molecular orbital study of the hydroxylation of benzene and monofluorobenzene catalysed by iron-oxo porphyrin π cation radical complexes , 1996, JBIC Journal of Biological Inorganic Chemistry.

[26]  Christopher A. Reed,et al.  Synthetic Heme Dioxygen Complexes , 1994 .

[27]  Ben F. Luisi,et al.  Stereochemistry of cooperative mechanisms in hemoglobin , 1987 .

[28]  Judith C. Gallucci,et al.  Pentacoordinated molecules. 24. Computer simulation of phosphorane structures , 1977 .

[29]  G. Loew,et al.  Identification of putative peroxide intermediates of peroxidases by electronic structure and spectra calculations , 1996 .

[30]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[31]  R. Matthews,et al.  How a protein binds B12: A 3.0 A X-ray structure of B12-binding domains of methionine synthase. , 1994, Science.

[32]  M. Parrinello,et al.  Factors Influencing Ligand-Binding Properties of Heme Models: A First Principles Study of Picket-Fence and Protoheme Complexes , 1999 .

[33]  M. Dupuis,et al.  Structure of a Model Transient Peroxide Intermediate of Peroxidases by ab Initio Methods , 1996 .

[34]  J. Fettinger,et al.  Structural characterization of a sterically encumbered iron(II) porphyrin CO complex , 1989 .

[35]  Gilda H. Loew,et al.  Structure and Spectra of Ferrous Dioxygen and Reduced Ferrous Dioxygen Model Cytochrome P450 , 1998 .

[36]  Michele Parrinello,et al.  A comparative study of O2, CO, and NO binding to iron–porphyrin , 1998 .

[38]  David F. Bocian,et al.  Carbonyl Tilting and Bending Potential Energy Surface of Carbon Monoxyhemes , 1996 .

[39]  Francisco Torrens,et al.  Conformational aspects of some asymmetric Diels-Alder reactions. A molecular mechanics + polarization study , 1992 .

[40]  Kyeongjae Cho,et al.  Ab initio study on the molecular recognition by metalloporphyrins: CO interaction with iron porphyrin , 1999 .

[41]  Emma Sigfridsson,et al.  On the significance of hydrogen bonds for the discrimination between CO and O2 by myoglobin , 1999, JBIC Journal of Biological Inorganic Chemistry.

[42]  J. Dawson,et al.  Heme-Containing Oxygenases. , 1996, Chemical reviews.

[43]  B. Malmström,et al.  Cytochrome oxidase as a redox-linked proton pump. , 1990, Acta physiologica Scandinavica. Supplementum.

[44]  Teizo Kitagawa,et al.  The Proximal Residue Largely Determines the CO Distortion in Carbon Monoxy Globin Proteins. An ab Initio Study of a Heme Prosthetic Unit , 1995 .

[45]  T. Vangberg,et al.  Deformability of Fe(II)CO and Fe(III)CN groups in heme protein models: nonlocal density functional theory calculations , 1997, JBIC Journal of Biological Inorganic Chemistry.

[46]  G. Loew,et al.  An ab Initio Model System Investigation of the Proposed Mechanism for Activation of Peroxidases: Cooperative Catalytic Contributions from the Ion and Microsolvent Water , 1998 .

[47]  J. Barber,et al.  Revealing the blueprint of photosynthesis , 1994, Nature.

[48]  K. Welinder Superfamily of plant, fungal and bacterial peroxidases , 1992 .

[49]  A. Veillard,et al.  Ab Initio Calculations of Metalloporphyrins , 1982 .

[50]  Michele Parrinello,et al.  Equilibrium Geometries and Electronic Structure of Iron−Porphyrin Complexes: A Density Functional Study , 1997 .