The complexity of spherical p-spin models - a second moment approach

Recently, Auffinger, Ben Arous, and \v{C}ern\'y initiated the study of critical points of the Hamiltonian in the spherical pure $p$-spin spin glass model, and established connections between those and several notions from the physics literature. Denoting the number of critical values less than $Nu$ by $\mbox{Crt}_{N}(u)$, they computed the asymptotics of $\frac{1}{N}\log(\mathbb{E}\mbox{Crt}_{N}(u))$, as $N$, the dimension of the sphere, goes to $\infty$. We compute the asymptotics of the corresponding second moment and show that, for $p\geq3$ and sufficiently negative $u$, it matches the first moment: \[ \mathbb{E}\left\{ \left(\mbox{Crt}_{N}\left(u\right)\right)^{2}\right\} /\left(\vphantom{\left(\mbox{Crt}_{N}\left(u\right)\right)^{2}}\mathbb{E}\left\{ \mbox{Crt}_{N}\left(u\right)\right\} \right)^{2}\to1. \] As an immediate consequence we obtain that $\mbox{Crt}_{N}(u)/\mathbb{E}\{ \mbox{Crt}_{N}(u)\} \to 1$, in $L^2$ and thus in probability. For any $u$ for which $\mathbb{E}\mbox{Crt}_{N}(u)$ does not tend to $0$ we prove that the moments match on an exponential scale.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[3]  M. Fiedler Bounds for the determinant of the sum of hermitian matrices , 1971 .

[4]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[5]  I. Ibragimov,et al.  Norms of Gaussian sample functions , 1976 .

[6]  R. Palmer,et al.  Solution of 'Solvable model of a spin glass' , 1977 .

[7]  G. Parisi A sequence of approximated solutions to the S-K model for spin glasses , 1980 .

[8]  A. Bray,et al.  Metastable states in spin glasses , 1980 .

[9]  A P Young,et al.  Weighted averages and order parameters for the infinite range Ising spin glass , 1983 .

[10]  M. Mézard,et al.  The simplest spin glass , 1984 .

[11]  A. Crisanti,et al.  The sphericalp-spin interaction spin glass model: the statics , 1992 .

[12]  Rieger The number of solutions of the Thouless-Anderson-Palmer equations for p-spin-interaction spin glasses. , 1992, Physical review. B, Condensed matter.

[13]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[14]  Andrea Crisanti,et al.  Thouless-Anderson-Palmer Approach to the Spherical p-Spin Spin Glass Model , 1995 .

[15]  Alice Guionnet,et al.  Large deviations for Wigner's law and Voiculescu's non-commutative entropy , 1997 .

[16]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[17]  G. Parisi,et al.  STATIONARY POINTS OF THE THOULESS-ANDERSON-PALMER FREE ENERGY , 1998 .

[18]  Andrea Cavagna,et al.  Quenched complexity of the mean-field p-spin spherical model with external magnetic field , 1999 .

[19]  A. Dembo,et al.  Aging of spherical spin glasses , 2001 .

[20]  Marvin Simon,et al.  Probability Distributions Involving Gaussian Random Variables , 2002 .

[21]  A. Crisanti,et al.  Complexity in the Sherrington-Kirkpatrick model in the annealed approximation , 2003, cond-mat/0307082.

[22]  The complexity of the spherical $\mathsf{p}$-spin spin glass model, revisited , 2003, cond-mat/0307586.

[23]  Giorgio Parisi,et al.  On the formal equivalence of the TAP and thermodynamic methods in the SK model , 2003 .

[24]  Y. Fyodorov Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. , 2004 .

[25]  M A Moore,et al.  Complexity of Ising spin glasses. , 2004, Physical review letters.

[26]  Critical Points and Supersymmetric Vacua I , 2004, math/0402326.

[27]  Critical points and supersymmetric vacua, II: Asymptotics and extremal metrics , 2004, math/0406089.

[28]  A. Crisanti,et al.  Complexity in mean-field spin-glass models: Ising p-spin , 2005 .

[29]  M. Talagrand Free energy of the spherical mean field model , 2006 .

[30]  M. Talagrand The parisi formula , 2006 .

[31]  Critical Points and Supersymmetric Vacua, III: String/M Models , 2005, math-ph/0506015.

[32]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[33]  Fedor Nazarov,et al.  On the number of nodal domains of random spherical harmonics , 2007, 0706.2409.

[34]  Asymptotics and Dimensional Dependence of the Number of Critical Points of Random Holomorphic Sections , 2007, math-ph/0703076.

[35]  L. Nicolaescu Critical sets of random smooth functions on products of spheres , 2010, 1008.5085.

[36]  Antonio Auffinger,et al.  Random Matrices and Complexity of Spin Glasses , 2010, 1003.1129.

[37]  L. Nicolaescu Critical sets of random smooth functions on compact manifolds , 2011, 1101.5990.

[38]  Wei-Kuo Chen The Aizenman-Sims-Starr scheme and Parisi formula for mixed p-spin spherical models , 2012, 1204.5115.

[39]  L. Nicolaescu Random Morse functions and spectral geometry , 2012, 1209.0639.

[40]  L. Nicolaescu Complexity of random smooth functions on compact manifolds , 2012, 1201.4972.

[41]  S. Zelditch,et al.  Critical values of random analytic functions on complex manifolds , 2012, 1212.4762.

[42]  Y. Fyodorov High-Dimensional Random Fields and Random Matrix Theory , 2013, 1307.2379.

[43]  Critical points of multidimensional random Fourier series: Variance estimates , 2013, 1310.5571.

[44]  Antonio Auffinger,et al.  Complexity of random smooth functions on the high-dimensional sphere , 2011, 1110.5872.

[45]  G. B. Arous,et al.  Complexity of random energy landscapes , 2013 .

[46]  D. Marinucci,et al.  On the Distribution of the Critical Values of Random Spherical Harmonics , 2014, 1409.1364.

[47]  O. Zeitouni,et al.  The extremal process of critical points of the pure p-spin spherical spin glass model , 2015, 1509.03098.

[48]  F. Nazarov,et al.  Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions , 2015, 1507.02017.

[49]  Valentina Cammarota,et al.  Fluctuations of the total number of critical points of random spherical harmonics , 2015, 1510.00339.

[50]  Eliran Subag,et al.  The geometry of the Gibbs measure of pure spherical spin glasses , 2016, 1604.00679.

[51]  P. Sarnak,et al.  Topologies of Nodal Sets of Random Band‐Limited Functions , 2013, Communications on Pure and Applied Mathematics.