Geometrically nonlinear free vibration and instability of fluid-conveying nanoscale pipes including surface stress effects

[1]  E. Özkaya,et al.  Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation , 2017 .

[2]  B. Fang,et al.  Nonlinear vibration of fluid-conveying single-walled carbon nanotubes under harmonic excitation , 2015 .

[3]  R. Ansari,et al.  Size-dependent nonlinear bending and postbuckling of functionally graded Mindlin rectangular microplates considering the physical neutral plane position , 2015 .

[4]  A. Norouzzadeh,et al.  Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model , 2015, Acta Mechanica Sinica.

[5]  A. Norouzzadeh,et al.  Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model , 2015 .

[6]  A. Norouzzadeh,et al.  Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory , 2015, Microfluidics and Nanofluidics.

[7]  Yujin Hu,et al.  Forced vibration of two coupled carbon nanotubes conveying lagged moving nano-particles , 2015 .

[8]  Zijun Zhang,et al.  Free Vibration Analysis of Fluid-Conveying Carbon Nanotube via Wave Method , 2014 .

[9]  A. G. Arani,et al.  Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs , 2014 .

[10]  Yangyang Luo,et al.  Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory , 2014 .

[11]  A. Setoodeh,et al.  Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory , 2014 .

[12]  P. Dashti,et al.  Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect , 2014 .

[13]  R. Kolahchi,et al.  Nonlinear vibration and instability of fluid-conveying DWBNNT embedded in a visco-Pasternak medium using modified couple stress theory , 2013 .

[14]  H. R. Mirdamadi,et al.  Innovative coupled fluid–structure interaction model for carbon nano-tubes conveying fluid by considering the size effects of nano-flow and nano-structure , 2013 .

[15]  H. R. Mirdamadi,et al.  Coupled effects of nano-size, stretching, and slip boundary conditions on nonlinear vibrations of nano-tube conveying fluid by the homotopy analysis method , 2013 .

[16]  R. Ansari,et al.  Thermal Buckling Analysis of a Mindlin Rectangular FGM Microplate Based on the Strain Gradient Theory , 2013 .

[17]  R. Ansari,et al.  Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams , 2013 .

[18]  M. Ghayesh,et al.  Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory , 2013 .

[19]  Tai-Ping Chang Nonlinear thermal–mechanical vibration of flow-conveying double-walled carbon nanotubes subjected to random material property , 2013 .

[20]  Reza Ansari,et al.  Surface Stress Effect on the Pull-In Instability of Hydrostatically and Electrostatically Actuated Rectangular Nanoplates With Various Edge Supports , 2012 .

[21]  S. Ramezani,et al.  A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory , 2012 .

[22]  R. Ansari,et al.  Nonlinear free vibration of embedded double-walled carbon nanotubes with layerwise boundary conditions , 2012 .

[23]  Mohammad Taghi Ahmadian,et al.  A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory , 2012 .

[24]  M. Ghayesh Subharmonic dynamics of an axially accelerating beam , 2012 .

[25]  Lin Wang SURFACE EFFECT ON BUCKLING CONFIGURATION OF NANOBEAMS CONTAINING INTERNAL FLOWING FLUID: A NONLINEAR ANALYSIS , 2012 .

[26]  B. Fang,et al.  Thermal–mechanical vibration and instability analysis of fluid-conveying double walled carbon nanotubes embedded in visco-elastic medium , 2011 .

[27]  M. Ghayesh,et al.  A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions , 2011 .

[28]  R. Gholami,et al.  Thermal Buckling Analysis of Embedded Single-Walled Carbon Nanotubes with Arbitrary Boundary Conditions Using the Nonlocal Timoshenko Beam Theory , 2011 .

[29]  M. Ahmadian,et al.  A homotopy perturbation analysis of nonlinear free vibration of Timoshenko microbeams , 2011 .

[30]  L. Ke,et al.  Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory , 2011 .

[31]  Lin Wang,et al.  Vibration analysis of fluid-conveying nanotubes with consideration of surface effects , 2010 .

[32]  W. Cleghorn,et al.  Nonlinear vibration of micromachined asymmetric resonators , 2010 .

[33]  Lin Wang,et al.  Size-dependent vibration characteristics of fluid-conveying microtubes , 2010 .

[34]  Lin Wang,et al.  Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory , 2010 .

[35]  Lin Wang,et al.  A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid , 2009 .

[36]  Lin Wang,et al.  VIBRATION AND INSTABILITY ANALYSIS OF TUBULAR NANO- AND MICRO-BEAMS CONVEYING FLUID USING NONLOCAL ELASTIC THEORY , 2009 .

[37]  M. Rasekh,et al.  Nonlinear vibration and stability analysis of axially loaded embedded carbon nanotubes conveying fluid , 2009 .

[38]  Sarp Adali,et al.  Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model. , 2009, Nano letters.

[39]  M. Foldvari,et al.  Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[40]  H. Rafii-Tabar,et al.  Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam , 2008, Nanotechnology.

[41]  Jin He,et al.  Surface effect on the elastic behavior of static bending nanowires. , 2008, Nano letters.

[42]  Gang Wang,et al.  Effects of surface stresses on contact problems at nanoscale , 2007 .

[43]  H. P. Lee,et al.  Thin plate theory including surface effects , 2006 .

[44]  Xizhang Wang,et al.  Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. , 2003, Journal of the American Chemical Society.

[45]  Fan Yang,et al.  Experiments and theory in strain gradient elasticity , 2003 .

[46]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[47]  S. E. Khadem,et al.  NON-LINEAR FREE VIBRATION ANALYSIS OF A STRING UNDER BENDING MOMENT EFFECTS USING THE PERTURBATION METHOD , 2002 .

[48]  Yoshio Bando,et al.  Carbon nanothermometer containing gallium , 2002, Nature.

[49]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[50]  Marco Amabili,et al.  VIBRATIONS OF CIRCULAR CYLINDRICAL SHELLS WITH NONUNIFORM CONSTRAINTS, ELASTIC BED AND ADDED MASS; PART I: EMPTY AND FLUID-FILLED SHELLS , 2000 .

[51]  C. Shu Differential Quadrature and Its Application in Engineering , 2000 .

[52]  A. Zettl,et al.  Mass-production of boron nitride double-wall nanotubes and nanococoons , 2000 .

[53]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[54]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[55]  Morton E. Gurtin,et al.  Surface stress in solids , 1978 .

[56]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[57]  A. C. Eringen,et al.  Nonlocal polar elastic continua , 1972 .

[58]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .