Recurrent Evolution of Melanism in South American Felids

Morphological variation in natural populations is a genomic test bed for studying the interface between molecular evolution and population genetics, but some of the most interesting questions involve non-model organisms that lack well annotated reference genomes. Many felid species exhibit polymorphism for melanism but the relative roles played by genetic drift, natural selection, and interspecies hybridization remain uncertain. We identify mutations of Agouti signaling protein (ASIP) or the Melanocortin 1 receptor (MC1R) as independent causes of melanism in three closely related South American species: the pampas cat (Leopardus colocolo), the kodkod (Leopardus guigna), and Geoffroy’s cat (Leopardus geoffroyi). To assess population level variation in the regions surrounding the causative mutations we apply genomic resources from the domestic cat to carry out clone-based capture and targeted resequencing of 299 kb and 251 kb segments that contain ASIP and MC1R, respectively, from 54 individuals (13–21 per species), achieving enrichment of ~500–2500-fold and ~150x coverage. Our analysis points to unique evolutionary histories for each of the three species, with a strong selective sweep in the pampas cat, a distinctive but short melanism-specific haplotype in the Geoffroy’s cat, and reduced nucleotide diversity for both ancestral and melanism-bearing chromosomes in the kodkod. These results reveal an important role for natural selection in a trait of longstanding interest to ecologists, geneticists, and the lay community, and provide a platform for comparative studies of morphological variation in other natural populations.

[1]  Correction: Recurrent Evolution of Melanism in South American Felids , 2015, PLoS Genetics.

[2]  D. Absher,et al.  Targeted Sequencing of Large Genomic Regions with CATCH-Seq , 2014, PloS one.

[3]  S. O’Brien,et al.  Phylogeography and population history of Leopardus guigna, the smallest American felid , 2014, Conservation Genetics.

[4]  L. Silveira,et al.  Molecular Data Reveal Complex Hybridization and a Cryptic Species of Neotropical Wild Cat , 2013, Current Biology.

[5]  Hitoshi Suzuki Evolutionary and phylogeographic views on Mc1r and Asip variation in mammals. , 2013, Genes & genetic systems.

[6]  G. Barsh,et al.  How the Leopard Hides Its Spots: ASIP Mutations and Melanism in Wild Cats , 2012, PloS one.

[7]  P. Andolfatto,et al.  Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species? , 2012, PLoS biology.

[8]  Renaud Vitalis,et al.  rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure , 2012, Bioinform..

[9]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[10]  Jay Shendure,et al.  Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection. , 2011, Genome research.

[11]  Innes C. Cuthill,et al.  Why the leopard got its spots: relating pattern development to ecology in felids , 2011, Proceedings of the Royal Society B: Biological Sciences.

[12]  E. Eizirik,et al.  Near fixation of melanism in leopards of the Malay Peninsula , 2010 .

[13]  David W. Macdonald,et al.  Biology and Conservation of Wild Felids , 2010 .

[14]  Nancy F. Hansen,et al.  Light whole genome sequence for SNP discovery across domestic cat breeds , 2010, BMC Genomics.

[15]  H. Hoekstra,et al.  Vertebrate pigmentation: from underlying genes to adaptive function. , 2010, Trends in genetics : TIG.

[16]  Shosuke Ito,et al.  Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function , 2009, Pigment cell & melanoma research.

[17]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[18]  Pablo Librado,et al.  DnaSP v5: a software for comprehensive analysis of DNA polymorphism data , 2009, Bioinform..

[19]  C. Bustamante,et al.  Molecular and Evolutionary History of Melanism in North American Gray Wolves , 2009, Science.

[20]  S. O’Brien,et al.  Inter‐species hybridization among Neotropical cats of the genus Leopardus, and evidence for an introgressive hybrid zone between L. geoffroyi and L. tigrinus in southern Brazil , 2008, Molecular ecology.

[21]  G. Barsh,et al.  A β-Defensin Mutation Causes Black Coat Color in Domestic Dogs , 2007, Science.

[22]  B. Browning,et al.  Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. , 2007, American journal of human genetics.

[23]  S. O’Brien,et al.  Genome Annotation Resource Fields--GARFIELD: a genome browser for Felis catus. , 2007, The Journal of heredity.

[24]  J. Mckinnon,et al.  Linking color polymorphism maintenance and speciation. , 2007, Trends in ecology & evolution.

[25]  H. Hoekstra Genetics, development and evolution of adaptive pigmentation in vertebrates , 2006, Heredity.

[26]  Adrian C. Newton,et al.  Rapid deforestation and fragmentation of Chilean Temperate Forests , 2006 .

[27]  Benjamin J Raphael,et al.  Identifying repeat domains in large genomes , 2006, Genome Biology.

[28]  Agostinho Antunes,et al.  The Late Miocene Radiation of Modern Felidae: A Genetic Assessment , 2006, Science.

[29]  G. Barsh,et al.  Structures of the agouti signaling protein. , 2005, Journal of molecular biology.

[30]  T. Caro The Adaptive Significance of Coloration in Mammals , 2005 .

[31]  N. Mundy,et al.  Mammalian melanism: natural selection in black and white. , 2003, Trends in genetics : TIG.

[32]  D. I. Våge,et al.  Pigmentary Switches in Domestic Animal Species , 2003, Annals of the New York Academy of Sciences.

[33]  G. Barsh,et al.  Accessory Proteins for Melanocortin Signaling , 2003 .

[34]  S. O’Brien,et al.  Molecular Genetics and Evolution of Melanism in the Cat Family , 2003, Current Biology.

[35]  G. Barsh,et al.  Spongiform Degeneration in mahoganoid Mutant Mice , 2003, Science.

[36]  Pardis C Sabeti,et al.  Detecting recent positive selection in the human genome from haplotype structure , 2002, Nature.

[37]  M. Sunquist,et al.  Wild Cats of the World , 2002 .

[38]  I. Wyllie,et al.  Spatial organization, ranging behaviour and habitat use of the kodkod (Oncifelis guigna) in southern Chile , 2002 .

[39]  M. Sunquist,et al.  NATURAL HISTORY AND LANDSCAPE-USE OF GUIGNAS (ONCIFELIS GUIGNA) ON ISLA GRANDE DE CHILOÉ, CHILE , 2002 .

[40]  Ronald W. Davis,et al.  The mouse mahogany locus encodes a transmembrane form of human attractin , 1999, Nature.

[41]  D. I. Våge,et al.  A non-epistatic interaction of agouti and extension in the fox, Vulpes vulpes , 1997, Nature Genetics.

[42]  J. Nadeau,et al.  Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function , 1993, Cell.

[43]  R. Robinson Homologous genetic variation in the Felidae , 1990, Genetica.

[44]  G. Barsh,et al.  Molecular genetics of coat colour, texture and length in the dog. , 2012 .

[45]  S. O’Brien,et al.  Phylogeny and evolution of cats (Felidae) , 2010 .

[46]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[47]  G. Barsh,et al.  Accessory proteins for melanocortin signaling: attractin and mahogunin. , 2003, Annals of the New York Academy of Sciences.

[48]  M. Majerus Melanism: Evolution in Action , 1998 .

[49]  I. Jackson,et al.  Molecular and developmental genetics of mouse coat color. , 1994, Annual review of genetics.