Protein domain analysis in the era of complete genomes

[1]  P Bork,et al.  Novel protein domains and repeats in Drosophila melanogaster: insights into structure, function, and evolution. , 2001, Genome research.

[2]  C. Chothia,et al.  Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. , 2001, Journal of molecular biology.

[3]  R. Kelley,et al.  IL‐17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL‐17F, and implications for receptor binding , 2001, The EMBO journal.

[4]  M. Gerstein,et al.  Annotation Transfer for Genomics: Measuring Functional Divergence in Multi-Domain Proteins , 2001, Genome Research.

[5]  M. Sternberg,et al.  Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. , 2001, Journal of molecular biology.

[6]  Thomas L. Madden,et al.  Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. , 2001, Nucleic acids research.

[7]  R. Timpl,et al.  Crystal structure and mutational analysis of a perlecan-binding fragment of nidogen-1 , 2001, Nature Structural Biology.

[8]  W. Lim,et al.  The double life of PX domains , 2001, Nature Structural Biology.

[9]  T. Cutforth,et al.  Crystal structure of an ephrin ectodomain. , 2001, Developmental Cell.

[10]  Chris Sander,et al.  Completeness in structural genomics , 2001, Nature Structural Biology.

[11]  N. Grishin Fold change in evolution of protein structures. , 2001, Journal of structural biology.

[12]  C. Ponting,et al.  On the evolution of protein folds: are similar motifs in different protein folds the result of convergence, insertion, or relics of an ancient peptide world? , 2001, Journal of structural biology.

[13]  C. Ponting,et al.  Protein repeats: structures, functions, and evolution. , 2001, Journal of structural biology.

[14]  Martin Vingron,et al.  Limits of homology detection by pairwise sequence comparison , 2001, Bioinform..

[15]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Liisa Holm,et al.  Picasso: generating a covering set of protein family profiles , 2001, Bioinform..

[17]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[18]  N. Grishin,et al.  KH domain: one motif, two folds. , 2001, Nucleic acids research.

[19]  D Raoult,et al.  Selfish DNA in protein-coding genes of Rickettsia. , 2000, Science.

[20]  R. Russell,et al.  Analysis and prediction of functional sub-types from protein sequence alignments. , 2000, Journal of molecular biology.

[21]  R. Mott,et al.  Accurate formula for P-values of gapped local sequence and profile alignments. , 2000, Journal of molecular biology.

[22]  E V Koonin,et al.  Estimating the number of protein folds and families from complete genome data. , 2000, Journal of molecular biology.

[23]  Anton J. Enright,et al.  GeneRAGE: a robust algorithm for sequence clustering and domain detection , 2000, Bioinform..

[24]  P. Karplus,et al.  Structure of the ERM Protein Moesin Reveals the FERM Domain Fold Masked by an Extended Actin Binding Tail Domain , 2000, Cell.

[25]  H. Hutter,et al.  Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. , 2000, Science.

[26]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[27]  Jérôme Gouzy,et al.  Whole Genome Protein Domain Analysis using a New Method for Domain Clustering , 1999, Comput. Chem..

[28]  Xiaojun Guan,et al.  Domain Identification by Clustering Sequence Alignments , 1997, ISMB.

[29]  Michael J. Eck,et al.  Three-dimensional structure of the tyrosine kinase c-Src , 1997, Nature.

[30]  C. Ponting Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3‐kinases: Binding partners of SH3 domains? , 1996, Protein science : a publication of the Protein Society.

[31]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[32]  E. Sonnhammer,et al.  Modular arrangement of proteins as inferred from analysis of homology , 1994, Protein science : a publication of the Protein Society.

[33]  C. Chothia One thousand families for the molecular biologist , 1992, Nature.

[34]  E. Triphosphat,et al.  FEBS Letters , 1987, FEBS Letters.

[35]  Alex Bateman,et al.  The InterPro database, an integrated documentation resource for protein families, domains and functional sites , 2001, Nucleic Acids Res..

[36]  Peer Bork,et al.  SMART: a web-based tool for the study of genetically mobile domains , 2000, Nucleic Acids Res..

[37]  Jérôme Gouzy,et al.  ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons , 2000, Nucleic Acids Res..

[38]  C. Ponting,et al.  Evolution of domain families. , 2000, Advances in protein chemistry.

[39]  Sarah A. Teichmann,et al.  DIVCLUS: an automatic method in the GEANFAMMER package that finds homologous domains in single- and multi-domain proteins , 1998, Bioinform..

[40]  C Chothia,et al.  Domains in proteins: definitions, location, and structural principles. , 1985, Methods in enzymology.