Integrable systems, toric degenerations and Okounkov bodies

Let $$X$$X be a smooth projective variety of dimension $$n$$n over $$\mathbb {C}$$C equipped with a very ample Hermitian line bundle $$\mathcal {L}$$L. In the first part of the paper, we show that if there exists a toric degeneration of $$X$$X satisfying some natural hypotheses (which are satisfied in many settings), then there exists a surjective continuous map from $$X$$X to the special fiber $$X_0$$X0 which is a symplectomorphism on an open dense subset $$U$$U. From this we are then able to construct a completely integrable system on $$X$$X in the sense of symplectic geometry. More precisely, we construct a collection of real-valued functions $$\{H_1, \ldots , H_n\}$${H1,…,Hn} on $$X$$X which are continuous on all of $$X$$X, smooth on an open dense subset $$U$$U of $$X$$X, and pairwise Poisson-commute on $$U$$U. Moreover, our integrable system in fact generates a Hamiltonian torus action on $$U$$U. In the second part, we show that the toric degenerations arising in the theory of Newton-Okounkov bodies satisfy all the hypotheses of the first part of the paper. In this case the image of the ‘moment map’ $$\mu = (H_1, \ldots , H_n): X \rightarrow \mathbb {R}^n$$μ=(H1,…,Hn):X→Rn is precisely the Newton-Okounkov body$$\Delta = \Delta (R, v)$$Δ=Δ(R,v) associated to the homogeneous coordinate ring $$R$$R of $$X$$X, and an appropriate choice of a valuation $$v$$v on $$R$$R. Our main technical tools come from algebraic geometry, differential (Kähler) geometry, and analysis. Specifically, we use the gradient-Hamiltonian vector field, and a subtle generalization of the famous Łojasiewicz gradient inequality for real-valued analytic functions. Since our construction is valid for a large class of projective varieties $$X$$X, this manuscript provides a rich source of new examples of integrable systems. We discuss concrete examples, including elliptic curves, flag varieties of arbitrary connected complex reductive groups, spherical varieties, and weight varieties.

[1]  Z. Teitler,et al.  TORIC VARIETIES , 2010 .

[2]  H. Konno,et al.  Convergence of K\"ahler to real polarizations on flag manifolds via toric degenerations , 2011, 1105.0741.

[3]  S. Sternberg,et al.  The Gelfand-Cetlin system and quantization of the complex flag manifolds , 1983 .

[4]  K. Kurdyka,et al.  Wf-stratification of subanalytic functions and the Lojasiewicz inequality , 1994 .

[5]  Andrei Okounkov,et al.  Brunn–Minkowski inequality for multiplicities , 1996 .

[6]  A. Okounkov Note on the Hilbert polynomial of a spherical variety , 1997 .

[7]  Kiumars Kaveh SAGBI bases and degeneration of spherical varieties to toric varieties , 2003, math/0309413.

[8]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[9]  K. Kurdyka,et al.  Proof of the gradient conjecture of R. Thom , 1999, math/9906212.

[10]  Toric degenerations of weight varieties and applications , 2004, math/0406329.

[11]  S. Yau,et al.  Lagrangian torus fibration of quintic hypersurfaces I: Fermat quintic case , 2001 .

[12]  Peter Littelmann,et al.  Cones, crystals, and patterns , 1998 .

[13]  Robert Lazarsfeld,et al.  Convex Bodies Associated to Linear Series , 2008, 0805.4559.

[14]  Why would multiplicities be log-concave ? , 2000 .

[15]  Michèle Audin,et al.  Spinning Tops: A Course on Integrable Systems , 1996 .

[16]  Toric degenerations of spherical varieties , 2004, math/0403379.

[17]  M. Brion,et al.  Sur l'image de l'application moment , 1987 .

[18]  Ezra Miller,et al.  Toric degeneration of Schubert varieties and Gelfand¿Tsetlin polytopes , 2003 .

[19]  A. Khovanskii,et al.  Convex bodies associated to actions of reductive groups , 2010, 1001.4830.

[20]  David Anderson Okounkov bodies and toric degenerations , 2010, 1001.4566.

[21]  Why Would Multiplicities be Log-Concave? , 2000, math/0002085.

[22]  Israel M. Gelfand,et al.  Finite-dimensional representations of the group of unimodular matrices , 1950 .

[23]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[24]  I. Dolgachev,et al.  Weighted projective varieties , 1982 .

[25]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[26]  Andrei Zelevinsky,et al.  Tensor product multiplicities, canonical bases and totally positive varieties , 1999, math/9912012.

[27]  E. Lerman Gradient flow of the norm squared of a moment map , 2004, math/0410568.

[28]  San Vu Ngoc,et al.  Symplectic theory of completely integrable Hamiltonian systems , 2011, 1306.0115.

[29]  Kiumars Kaveh,et al.  Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory , 2009, 0904.3350.

[30]  Craig Huneke,et al.  Commutative Algebra I , 2012 .

[31]  T. Willmore Algebraic Geometry , 1973, Nature.

[32]  Polygon spaces and Grassmannians , 1996, dg-ga/9602012.

[33]  Kiumars Kaveh,et al.  Convex bodies and algebraic equations on affine varieties , 2008, 0804.4095.

[34]  Christopher Manon Toric Degenerations and tropical geometry of branching algebras , 2011, 1103.2484.

[35]  J. Weitsman,et al.  Bohr-sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula , 1992 .

[36]  V. LAKSHMIBAIAbstract Degenerations of Flag and Schubert Varieties to Toric Varieties , 1996 .

[37]  K. Ueda,et al.  Toric degenerations of Gelfand-Cetlin systems and potential functions , 2008, 0810.3470.

[38]  A. Khovanskii,et al.  Mixed volume and an extension of intersection theory of divisors , 2008, 0812.0433.

[39]  David Anderson,et al.  Okounkov bodies of finitely generated divisors , 2012, 1206.2499.

[40]  Valuations, Deformations, and Toric Geometry , 2003, math/0303200.

[41]  Toric degenerations of Schubert varieties , 2000, math/0012165.

[42]  P. Newstead Moduli Spaces and Vector Bundles: Geometric Invariant Theory , 2009 .