High-Order Locally A-Stable Implicit Schemes for Linear ODEs

Accurate simulations of wave propagation in complex media like Earth subsurface can be performed with a reasonable computational burden by using hybrid meshes stuffing fine and coarse cells. Locally implicit time discretizations are then of great interest. They indeed allow using unconditionally stable Schemes in the regions of computational domain covered by small cells. The receivable values of the time step are then increased which reduces the computational costs while limiting the dispersion effects. In this work we construct a method that combines optimized explicit Schemes and implicit Schemes to form locally implicit schemes for linear ODEs, including in particular semi-discretized wave problems that are considered herein for numerical experiments. Both the explicit and implicit schemes used are one-step methods constructed using their stability function. The stability function of the explicit schemes are computed by maximizing the time step that can be chosen. The implicit schemes used are unconditionally stable and do not necessary require the same number of stages as the explicit schemes. The performance assessment we provide shows a very good level of accuracy for locally implicit schemes. It also shows that a locally implicit scheme is a good compromise between purely explicit and purely implicit schemes in terms of computational time and memory usage.

[1]  Gary Cohen,et al.  MIXED FINITE ELEMENTS WITH MASS-LUMPING FOR THE TRANSIENT WAVE EQUATION , 2000 .

[2]  Stéphane Lanteri,et al.  Locally Implicit Discontinuous Galerkin Time Domain Method for Electromagnetic Wave Propagation in Dispersive Media Applied to Numerical Dosimetry in Biological Tissues , 2016, SIAM J. Sci. Comput..

[3]  Jerónimo Rodríguez Une nouvelle méthode de raffinement de maillage spatio-temporel pour l'équation des ondes , 2004 .

[4]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[5]  Marc Duruflé,et al.  Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique. (Numerical integration and high order finite element methods applied to time-harmonic Maxwell equations) , 2006 .

[6]  Willem Hundsdorfer,et al.  Stability of implicit-explicit linear multistep methods , 1997 .

[7]  Patrick Joly,et al.  Optimized higher order time discretization of second order hyperbolic problems: Construction and numerical study , 2010, J. Comput. Appl. Math..

[8]  J. M. Sanz-Serna,et al.  Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations , 1987 .

[9]  Marcus J. Grote,et al.  Runge-Kutta-Based Explicit Local Time-Stepping Methods for Wave Propagation , 2015, SIAM J. Sci. Comput..

[10]  Rosemary A. Renaut,et al.  Optimal Runge-Kutta Methods for First Order Pseudospectral Operators , 1999 .

[11]  Jerónimo Rodríguez,et al.  Raffinement de Maillage Spatio-Temporel pour les Équations de l'Élastodynamique. (Space-Time Mesh Refinement for Elastodynamic Equations) , 2004 .

[12]  Haijin Wang,et al.  Implicit–Explicit Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Convection–Diffusion Problems , 2019, Journal of Scientific Computing.

[13]  L. M. Skvortsov Diagonally implicit Runge-Kutta methods for stiff problems , 2006 .

[14]  Bernardo Cockburn,et al.  High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics , 2011, J. Comput. Phys..

[15]  M. N'diaye,et al.  Optimized High Order Explicit Runge-Kutta-Nyström Schemes , 2017 .

[16]  S. Piperno Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems , 2006 .

[17]  Jan S. Hesthaven,et al.  Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes , 2007, J. Comput. Phys..

[18]  Stéphane Lanteri,et al.  High-order locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations , 2012 .

[19]  B. L. Ehle A-Stable Methods and Padé Approximations to the Exponential , 1973 .

[20]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[21]  Andreas Sturm,et al.  Error Analysis of a Second-Order Locally Implicit Method for Linear Maxwell's Equations , 2016, SIAM J. Numer. Anal..

[22]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[23]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[24]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[25]  Gary Cohen,et al.  Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations , 2016 .

[26]  Matteo Parsani,et al.  Optimized Explicit Runge-Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems , 2012, SIAM J. Sci. Comput..

[27]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[28]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[29]  Julien Diaz,et al.  Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations , 2007, SIAM J. Sci. Comput..

[30]  David I. Ketcheson,et al.  Optimal stability polynomials for numerical integration of initial value problems , 2012, 1201.3035.

[31]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[32]  M. N'diaye,et al.  High‐order Padé and singly diagonally Runge‐Kutta schemes for linear ODEs, application to wave propagation problems , 2018 .

[33]  Steven J. Ruuth,et al.  Implicit-Explicit Methods for Time-Dependent PDE''s , 1993 .

[34]  Peter Monk,et al.  Finite Element Methods for Maxwell's Equations , 2003 .

[35]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[36]  Wolfgang A. Wall,et al.  Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation , 2016 .

[37]  Jan Verwer Component splitting for semi-discrete Maxwell equations , 2011 .

[38]  J. Charles Gilbert,et al.  Higher Order Time Stepping for Second Order Hyperbolic Problems and Optimal CFL Conditions , 2008 .