High-Order Locally A-Stable Implicit Schemes for Linear ODEs
暂无分享,去创建一个
[1] Gary Cohen,et al. MIXED FINITE ELEMENTS WITH MASS-LUMPING FOR THE TRANSIENT WAVE EQUATION , 2000 .
[2] Stéphane Lanteri,et al. Locally Implicit Discontinuous Galerkin Time Domain Method for Electromagnetic Wave Propagation in Dispersive Media Applied to Numerical Dosimetry in Biological Tissues , 2016, SIAM J. Sci. Comput..
[3] Jerónimo Rodríguez. Une nouvelle méthode de raffinement de maillage spatio-temporel pour l'équation des ondes , 2004 .
[4] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[5] Marc Duruflé,et al. Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique. (Numerical integration and high order finite element methods applied to time-harmonic Maxwell equations) , 2006 .
[6] Willem Hundsdorfer,et al. Stability of implicit-explicit linear multistep methods , 1997 .
[7] Patrick Joly,et al. Optimized higher order time discretization of second order hyperbolic problems: Construction and numerical study , 2010, J. Comput. Appl. Math..
[8] J. M. Sanz-Serna,et al. Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations , 1987 .
[9] Marcus J. Grote,et al. Runge-Kutta-Based Explicit Local Time-Stepping Methods for Wave Propagation , 2015, SIAM J. Sci. Comput..
[10] Rosemary A. Renaut,et al. Optimal Runge-Kutta Methods for First Order Pseudospectral Operators , 1999 .
[11] Jerónimo Rodríguez,et al. Raffinement de Maillage Spatio-Temporel pour les Équations de l'Élastodynamique. (Space-Time Mesh Refinement for Elastodynamic Equations) , 2004 .
[12] Haijin Wang,et al. Implicit–Explicit Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Convection–Diffusion Problems , 2019, Journal of Scientific Computing.
[13] L. M. Skvortsov. Diagonally implicit Runge-Kutta methods for stiff problems , 2006 .
[14] Bernardo Cockburn,et al. High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics , 2011, J. Comput. Phys..
[15] M. N'diaye,et al. Optimized High Order Explicit Runge-Kutta-Nyström Schemes , 2017 .
[16] S. Piperno. Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems , 2006 .
[17] Jan S. Hesthaven,et al. Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes , 2007, J. Comput. Phys..
[18] Stéphane Lanteri,et al. High-order locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations , 2012 .
[19] B. L. Ehle. A-Stable Methods and Padé Approximations to the Exponential , 1973 .
[20] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[21] Andreas Sturm,et al. Error Analysis of a Second-Order Locally Implicit Method for Linear Maxwell's Equations , 2016, SIAM J. Numer. Anal..
[22] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[23] M. Carpenter,et al. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .
[24] Vicente Hernández,et al. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.
[25] Gary Cohen,et al. Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations , 2016 .
[26] Matteo Parsani,et al. Optimized Explicit Runge-Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems , 2012, SIAM J. Sci. Comput..
[27] Patrick Amestoy,et al. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..
[28] J. Butcher. Numerical methods for ordinary differential equations , 2003 .
[29] Julien Diaz,et al. Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations , 2007, SIAM J. Sci. Comput..
[30] David I. Ketcheson,et al. Optimal stability polynomials for numerical integration of initial value problems , 2012, 1201.3035.
[31] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[32] M. N'diaye,et al. High‐order Padé and singly diagonally Runge‐Kutta schemes for linear ODEs, application to wave propagation problems , 2018 .
[33] Steven J. Ruuth,et al. Implicit-Explicit Methods for Time-Dependent PDE''s , 1993 .
[34] Peter Monk,et al. Finite Element Methods for Maxwell's Equations , 2003 .
[35] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[36] Wolfgang A. Wall,et al. Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation , 2016 .
[37] Jan Verwer. Component splitting for semi-discrete Maxwell equations , 2011 .
[38] J. Charles Gilbert,et al. Higher Order Time Stepping for Second Order Hyperbolic Problems and Optimal CFL Conditions , 2008 .